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Abstract

With the increase in multispectral and hyperspectral satellite data avail-
ability, the necessity of interpreting and processing such data is also growing.
Satellite imagery can be used in a wide range of fields, from military and de-
fence applications to ecology, agriculture and forest management. As multi-
and hyperspectral images cannot be directly interpreted either by the hu-
man eye or by usual computer displays, a visually-consistent mapping of
these images is necessary. In this paper we propose an approach based on an
artificial intelligence (AI) model for spectral image visualisation in the RGB
color space. The visualization is performed by a fully-connected neural net-
work trained on the popular CAVE dataset which we consider being suitable
for visualization, as it has a significant color diversity in the visible domain.
The coloring method was applied on a hyperspectral PRISMA image. The
study offers a visual interpretation of the results obtained with the proposed
architecture. The results are promising and will be further used for the true
mapping of agricultural areas.
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1 Introduction

Each type of material has a unique spectral fingerprint, which means that light
is absorbed differently by objects with different properties. Multispectral (MS)
and hyperspectral (HS) sensors can capture tens or even hundreds of spectral
bands therefore they are much more sensitive to small changes in an object’s
reflectance or radiance. In the images produced by such sensors, objects are
described by additional parameters besides the descriptive geometric data, as each
pixel also contains spectral information about the chemical composition of the
objects compared to RGB images. For this reason, the former is increasingly used
in many remote sensing fields such as agriculture [1, 2, 3], forestry [4, 5], ecology
and environmental monitoring [6], and military and industrial applications.
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The visualization of MS and HS data as RBG images is extremely important
because an RGB image serves as an interface between the human eye and the
multidimensional data space, helping the viewer to correlate pixel areas to the
surface features they represent. To generate realistic RGB images using spec-
tral images, a number of visualization methods have been proposed in literature,
such as band selection [7][8], PCA based methods [9] or, more recently, machine
learning [10][11]. However, research in this field is still quite scarce. For this
reason, one of the main objectives of our investigation was to obtain meaningful
corresponding RGB images for MS and HS images using a fully-connected neural
network (FCNN) trained for this task.

The spectral image sensors provide images with a large number of contiguous
spectral channels per pixel and the sources from which these images come are
diverse, therefore visualizing these massive datasets is not simple and straight-
forward. The process of visualization has a particular value for users who need
to evaluate the importance of data, which is why we have proposed in this study
a suitable architecture for this assignment. As the human visual perception is
not necessarily a linear process, the use of a linear color space to represent images
might result in an unpleasant effect on the human observer, generating the impres-
sion of high contrast between the darker and the lighter areas. Furthermore, pairs
of colors which in the RGB color cube are at the same Euclidean distance might be
perceived totally different by humans, the RGB cube thus being a perceptually-
nonlinear space [12]. Taking this into consideration, the nonlinearity of a neural
network (NN) could provide a good way of modeling the transform function from
multispectral to tridimensional RGB, in order to offer a perceptually proper in-
terpretation for human users.

The aim of this article is to provide answers to some research questions within
the context of spectral image visualization. One of the open questions is if an AI
model is capable of learning the correspondence between MS or HS reflectance
curves and RGB triplets. The results of our experiments confirm that by training
a NN to learn the RGB equivalent for spectral pixels, visually consistent RGB
images can by generated. Two important considerations should be mentioned
here. The first one is that at the moment, the interpretation of the results has
been done from a visual point of view and considering some common metrics. The
second is that the network testing was done using a single HS satellite image, and
this should be extended to test other satellite images. Another open concern in the
field of spectral image visualization is to discover what are the main characteristics
of a data set suitable for optimal coloring results. As our tests have shown, in
order to have a good coloring, it is important to use for the training of the NN
a dataset with a significant color diversity in the visible domain. The amount of
data on which training is done must be large enough and correct standardization
before training is extremely important. A third issue considered was to feature
the advantages of coloring spectral images using a NN over other alternative
visualization techniques. We can mention among these advantages the relatively
easy adaptability through an interpolation process to inputs having a different
spectral resolution. Another advantage of a NN is its non-linearity, the network
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being thus able to emulate the nonlinear visual perception of human users and
so to enhance the coloring output. Furthermore enhancing the training data set
could be an option to achieve improved visual results.

2 Datasets

The high-resolution spectral information provided by multi- and hyperspec-
tral imagery has changed the way we think about environmental and ecosystem
phenomena. More and more such data are becoming available for scientific and
practical purposes, and analysing them is a first step in better understanding the
phenomena mentioned above. Various datasets are available and known including
CAVE [13], UGR [14], UEA Colour Group datasets [15]. For this study we chose
the CAVE dataset, which is well known in literature, because it offers a good di-
versity of colors, the images were acquired in controlled environment and for each
MS image an RGB correspondent is available. For testing we used a HS image
provided by the relatively new PRISMA satellite.

2.1 CAVE Dataset

The CAVE high-resolution MS image dataset [13] contains 32 images of indoor
scenes. Each MS image has a resolution of 512×512 pixels and covers a wavelength
range in [400 - 700 nm], sampled at 10 nm intervals, providing a total of 31
channels. Each scene has also a unique corresponding color image representation,
rendered under a neutral daylight illuminant and displayed using sRGB values.
Some samples from CAVE dataset are displayed in Figure 1.

Figure 1: RGB images from the CAVE database.

2.2 PRISMA Image

The PRISMA image used for testing is one of the images captured by the
Italian Space Agency (ASI)’s PRISMA hyperspectral satellite on 18th of October
2022 in the north of Brasov county, Romania. The hyperspectral sensors of the
satellite are able to recall images in a wavelength range of 239 spectral bands
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between [400 - 2500 nm], 66 in the Visible Near Infra Red [400 - 1010 nm], and
173 in the Short Wave Infra Red [920 - 2500 nm], with a spectral sampling interval
smaller than 12 nm. The images have a spatial resolution of 1000 × 1000 pixels,
with a ground sample distance of 30 m [16]. The spectral bands used in the
experiments are in the visible domain from 406 nm to 713 nm, roughly 8 nm
sampled.

3 The Proposed AI Model Architecture

In practice, a number of classical algorithms are commonly used to visualize
MS images, for example by using band selection or linear color formation models.
These approaches presume the choice of the appropriate illuminant and the mod-
elling of the nonlinearity of human perception by gamma correction. The results
of these algorithms often present low visual quality. As mentioned in the intro-
duction, a NN approach could as well simulate the nonlinear human perception
as offer a general solution for MS images acquired by different systems.

3.1 Model Description

As the coloring for visualization of the MS images can be formulated as a
regression problem, it seems appropriate to use for this purpose a FCNN, inspired
by the one proposed in [17]. As the number of wavelength present in the CAVE
dataset used for training the model are 31, this is the number of neurons in the
input layer of the network. The network is constructed with 3 fully connected
hidden layers and an output layer containing three neurons, one for each of the
RGB color channels. Thus, the model estimates for each MS pixel input an RGB
output, see Figure 2.

Multispectral pixel 

with N wavelengths FCNN RGB pixel

Figure 2: Model pipeline.

3.2 Training of the Model

The FCNN model was trained on all the pixels of all the images in the CAVE
dataset, collected into a single randomly shuffled set. This set was partitioned
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into train and test set and the model was trained until the loss decay on both
train and test set was stabilized. During each training epoch randomly selected
pixel batches of the training set were passed through the network, using PyTorch
data loader. The training stages can be synthesized by the following methodology.

Training Steps

1. Loading of all the pixels from all the images into one dataframe [18].

2. Random shuffling of all the pixels.

3. Partitioning of the set into train set - 75% of the pixels - and test set - 25%
of the pixels.

4. Standardization of the training using the PyTorch standard scaler and using
the transformation on test dataset [19].

5. Training the model with random batches of 2048 pixels.

4 Analysis and Interpretation of Results

Following a set of experiments it proved sufficient to train the model on 150
epochs. To validate the correctness of the training method, k-fold cross validation
with 10 folds was used. On each fold the average losses on the training and on
the test were calculated and plotted. The results on most folds were similar,
indicating the correctness of the approach. The loss decay during training on one
of the folds is presented in Figure 3. It can be seen, that the loss on the training
set has a steep decay, while for similar results on the test set, the model needs
more training.

on train set on test set

Figure 3: Loss decay on CAVE dataset.

During the k-fold process all the weights were saved and the best ones were
used for coloring all the MS images of the CAVE dataset. The visual outputs were
accurate, further validating the chosen model. Figure 4 is presenting the coloring
result on two samples of the dataset together with the provided RGB label image.
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One may notice that the two images are visually identical. The similarity measures
for the pairs of input-output images in the train set confirm the visual results.
The considered quality metrics were Mean Squared Error (MSE) and Peak Signal-
to-Noise Ratio (PSNR). For MSE the values for the pairs are between [0.09-0.17]
and the values for PSNR are between [55.71-58.45].

FCNN 

output

RGB 

label

Figure 4: Coloring of two MS images from the CAVE dataset using the trained
FCNN model.

The trained model was also used to visualize HS satellite images obtained
from the PRISMA satellite. It must be mentioned, that the spectral bands of the
PRISMA images differ slightly from those of the images in the CAVE dataset.
We considered from the PRISMA images only the wavelength in the visual range
and linearly interpolated them to fit those of the CAVE dataset. The coloring of
the HS images was performed by the following procedure.

Inference

1. Load the pixels of the PRISMA image into a dataframe.

2. Linearly interpolate the values as to fit the wavelength to those of the CAVE
images. As the spectral range of the PRISMA image is very similar to the
one of CAVE images, we considered linear interpolation as accurate enough.

3. Standardize the pixels of the dataframe relative to their mean and variance
using the standard PyTorch scaler.

4. Pass each pixel through the model to predict the corresponding (R,G,B)
triplet.

5. Construct the RGB-image with respect to the original size of the PRISMA
image and save as PNG file.
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(a) PRISMA image Level 1 (b) PRISMA image Level 2B

(c) PRISMA image Level 2C (d) PRISMA image Level 2D

Figure 5: Coloring of four products of PRISMA image using the FCNN model
with weights trained on CAVE dataset before and after corrections.

A result of this coloring on a PRISMA image is presented in Figure 5. Four dif-
ferent product levels of the same PRISMA image were visualized by the network,
each of them presenting the initial HS image, while the other three present sub-
sequent levels of correction. Level 1 is a top of the atmosphere radiance imagery.
After the atmospheric correction and geolocation of Level 1, Level 2B image con-
tains the information about the reflected radiance of the Earth’s surface, and Level
2C has the information about the boundary reflection coefficient, aerosol optical
thickness and water vapor map. The last level, Level 2D, represents the image
after all the transforms plus orthorectification [16, 5]. According to [16], ”the
orthorectification process foresees the correction of all image distortions caused
by the collection geometry (this includes the optical sensor characteristics) and
the variable terrain”.

As can be seen in Figure 5, the results of the coloring are promising. The
expected natural coloring of the image is achieved in all four cases, given that the
image was acquired late October. The region of the valley is accurately rendered
and the agricultural parcels can be clearly distinguished. There are still some
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artefacts present, probably due to highly reflective surfaces. This might be due
to the fact that the training dataset was acquired in the indoor environment and
has a specific spectral signature. Another aspect might concern the interpola-
tion method, opening the research possibility of other interpolation or mapping
methods.

It also can be noticed that after corrections in Level 2, the slightly blueish col-
oring of the Level 1 HS image is attenuated, and the green color of the vegetation
is enhanced. The most pronounced difference in color to the original sample can
be observed after orthorectification. Level 2C leads to a higher contrast are more
vivid colors. Level 2B and Level 2C images are the most colorful.

5 Conclusions and Future work

This paper presents a novel fully connected model for the task of HS/MS
images coloring. The given architecture has yielded encouraging results. This
study was developed on two known datasets in the field, CAVE and PRISMA,
but we are interested in running additional tests on several datasets with different
characteristics, the indoor category which is a controlled environment, and also
the outdoor variety which is a natural environment. Such an approach can bring
generality to the solution already offered, but also optimal and diversified results.
However, the proposed network can further be optimized, for instance, one minor
restriction that we have noticed through testing is that the current model still
generates errors for highly reflective surfaces. In addition, at this point of the
study, visually it can be seen that the results are meaningful. Still, there is nec-
essary to validate the results with other different classical (Euclidean Distance,
Mahalanobis Distance, Cosine Similarity, etc) and/or specific (Structural Similar-
ity Index, Universal Quality Image Index, etc) metrics. We also want to improve
the performance and results of the model by enhancing the input datasets.
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