
1 

Images and CNN applications in smart agriculture 

Mohammad El Sakkaa* and Josiane Mothea and Mihai Ivanovicib 

aIRIT UMR5505 CNRS, Université de Toulouse, France 

{mohammad.el-sakka / Josiane.Mothe}@irit.fr 

bTransilvania University of Brasov, Romania 

Mihai.Ivanovici@unitbv.ro 

Abstract 

In recent years, the agricultural sector has undergone a revolutionary shift toward 

‘smart farming’, integrating advanced technologies to strengthen crop health and 

productivity significantly. This paradigm shift holds profound implications for 

food safety and the broader economy. At the forefront of this transformation is 

deep learning, a subset of artificial intelligence based on artificial neural 

networks, has emerged as a powerful tool in detection and classification tasks. 

Specifically, Convolutional Neural Networks (CNNs), a specialized type of deep 

learning and computer vision models, demonstrated remarkable proficiency in 

analyzing crop imagery, whether sourced from satellites, aircraft, or terrestrial 

cameras. These networks often leverage vegetation indices and multispectral 

imagery to enhance their analytical capabilities. Such model contribute to the 

development of systems that could enhance agricultural outcomes (Tian et al., 

2020). This review encapsulates the current state of the art in using CNNs in 

agriculture. It details the image types utilized within this context, including, but 

not limited to, multispectral images and vegetation indices. Furthermore, it 

catalogs accessible online datasets pertinent to this field. Collectively, this paper 

underscores the pivotal role of CNNs in agriculture and highlights the 

transformative impact of multispectral images in this rapidly evolving domain. 
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Introduction 

Crops are not only used to produce food but also to feed livestock, create paper and 
furniture, or produce fuel. Plant diseases, pests, and weed invasions directly affect these 
productions or their yield. The Food and Agriculture Organization of the United Nations 
estimates that $220 billion USD are lost worldwide due to crop diseases, which accounts 
for more than 20% of crops produced a year (Food and Agriculture Organization of the 
United Nations, 2019). 

Plants are subject to two main types of threats, (1) biotic stress, such as pathogens, 
fungi, bacteria, and insects, and (2) abiotic stress, such as climate change, weather, 
salinity, soils, and chemicals (Gull et al., 2019). In both cases, diseases appear on plants 
and can be spotted by human observation and measurement. For instance, examining 
leaves can reveal deformed shapes and discoloration in infected tissues. These tissues 
often show black, yellow, powdery, or blight spots (Angelo Randaci, Earth’s Ally, 2021). 
Thus, spotting and detecting diseased spots, then diagnosing diseases is a major process 
to prevent plant disease outbreaks and to protect both the population and the economy. 
Traditionally, farmers rely on visual and physical properties of crops to identify 
anomalies such as plant stress, diseases, or weeds. Such properties can be captured 
nowadays by cameras or satellites, allowing machine learning models to help farmers 
make decisions on the collected images. To avoid propagation, threats should be detected 
as soon as possible and remedial actions should be as precise as possible. Machine 
learning models can help accelerate the detection and decision processes. Indeed, the 
world is leaning toward ‘smart agriculture’ (Pratyush Reddy et al., 2020). Smart 
agriculture, or smart farming (Jayaraman et al., 2016), is the use of advanced technologies 
to increase agricultural productivity and crop health using minimum resources. Smart 
farming includes intelligent watering systems, smart greenhouses, automatic or semi-
automatic robots, drones, or user notifications (Jha et al., 2019). Machine learning 
includes models and algorithms that learn to perform certain tasks such as decision-
making and prediction based on knowledge acquired from previously seen data (Burkov, 
2019; Kelleher, 2019; Segaran, 2007). Different machine learning techniques have been 
applied to smart agriculture, for instance: Random Forest for crop prediction (Geetha et 
al., 2020), or Decision Tree (Rajesh et al., 2020) and K-Nearest Neighbors (Suresha et 
al., 2017) for plant leaf disease detection. More recently deep learning and neural 
networks are often used because of their high performance. Neural networks are named 
and structured as an inspiration of how biological neurons signal to one another 
(Goodfellow et al., 2016). They are made of layers of neurons which are units that make 
computations to perceive features and help make decisions. Different architectures of 
deep neural networks have been developed for various tasks. In computer vision and 
imagery, convolutional neural networks (CNNs) (Yoo, 2015) are a commonly used 
architecture because of their higher effectiveness than other machine learning methods 
(Liakos et al., 2018). As many applications in agriculture are related to image analysis, it 
is relevant to examine how CNNs can be used in different applications in agriculture. This 
survey focuses on remote sensing and image processing using CNNs in agriculture. There 
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have been several survey papers focusing on one specific agriculture task (Hasan et al., 
2021; K. Hu et al., 2021; Kamarudin et al., 2021; Kok et al., 2021; J. Liu & Wang, 2021; 
Saleem et al., 2019; X. Wu et al., 2019), but none has covered multiple tasks in 
agriculture. This survey aims to fill this gap by covering several different tasks that CNNs 
solve in agriculture. In fact, many applications in agriculture have common properties 
and techniques to share. Thus, a survey is beneficial in revealing similarities and 
differences across different applications. This paper covers the analysis of more than 100 
research papers published in reputable and high-impact journals and conferences in this 
field related to multispectral remote sensing, datasets, vegetation indexes, and CNN 
applications in agriculture. We explore in detail the methods and processes employed by 
more than 15 research papers on CNN applications and provide a comprehensive 
summary about 20 others. This survey aims to achieve three goals: firstly, to provide an 
overview of the types of images used to train machine learning models in agriculture, 
including ground-based or aerial, multispectral or RGB or with vegetation indexes; 
secondly, to present the various CNN applications in agriculture, while analyzing their 
implementation and architecture; and thirdly, to provide a list of useful resources to 
researchers such as references to common practices in machine learning or datasets useful 
in agriculture. In this, we cover the different phases for new developments for smart 
agriculture that use images as a source of decision-making.  

The rest of this survey is organized as follows: first, we introduce the methodology 
we followed to retrieve research articles, reviews, and other relevant data for our study. 
Then, we present related work, consisting in reviews and surveys on machine learning in 
agriculture in general and CNNs in agriculture in particular, in addition to reviews that 
address the topics of image datasets. Then, we report on different types of images used in 
agriculture and we explain how the use case of these different images relies on their 
acquisition method, because different use cases may require different acquisition methods 
since the way images are acquired has an impact on the resolution, the quality, the 
distance to the subject, and the angle of shot of the images. In addition, we present 
multispectral images along with satellite images because of the importance and the value 
that they add to remote sensing and computer vision in agriculture. Then, we present a set 
of free and public image datasets in agriculture, which can be used to train machine 
learning models. The datasets that we describe fall into 6 categories: weed management, 
disease detection, pest detection, crop classification, yield estimation, and damage 
detection. Then, we review research articles and studies that use CNNs in agriculture for 
weed management, plant disease detection, yield prediction, crop type classification, crop 
counting, and water management. Finally, we end with a discussion on our findings with 
future prospects and identified gaps and a conclusion. 
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Figure 1. Keyword co-occurrence map based on the results of the query [machine 
learning] AND [agriculture] on the Web of Science 

 

Figure 2. Keyword co-occurrence map based on the results of the query [convolutional 
neural networks] AND [agriculture] on the Web of Science 
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Methodology 

This survey focuses on CNN applications in the field of agriculture. Our study revolves 
around two main axes: (1) analyzing the type and properties of the images used in the 
field, and (2) analyzing how CNNs contribute to agriculture-related tasks. 

In the first axis, we search for publicly available agriculture image datasets and 
we analyze the properties of these images, such as their resolution, the acquisition method 
used, the number of channels they have, or the environment in which they were taken. 
Not all datasets are scholarly referenced, thus we manually search for agricultural 
datasets. This phase of our survey was performed by searching on the Web for datasets 
relevant to agriculture, on websites such as Kaggle (up to April 2023). On the other hand, 
we also searched the literature using the Web of Science and Google Scholar for datasets 
that are referenced by articles. We did this either by looking for scholar papers that present 
a survey or review of agricultural datasets, or studies relevant to agriculture that provide 
their experimental datasets. More specifically we search in journals dedicated to data, 
such as Data in Brief (up to April 2023). As a result of this strategy, we retrieved datasets 
that are useful in different subfields of agriculture.  

We categorized our findings of freely available image datasets in agriculture into 
six categories: weed management, disease detection, pest detection, crop classification, 
yield estimation, and damage detection. From this large pool, we picked 25 datasets that 
are representative enough of the diverse identified applications. The selection process 
prioritized datasets based on their reliability and originality, as well as the creativity and 
uniqueness they offer. Given that datasets and studies contain multispectral images, 
vegetation indexes, and satellite images, we dedicate a special part of our paper to this 
type of images by searching on Google Scholar and the web for books and articles 
addressing the topic of multispectral remote sensing. With regard to the second axis, on 
how CNNs contribute to agriculture-related tasks, we used Google Scholar and the Web 
of Science. Our motivation to look for CNNs in agriculture comes from the hypothesis 
that CNNs are one of the most used deep learning methods in agriculture. We employed 
a bibliometric research method, which validated our hypothesis. For that, we used a 
keyword-based search on the Web of Science: [machine learning] AND [agriculture], 
then, by selecting papers with high impact, we collected featured author keywords and 
we kept the ones that were repeated the most and removed less relevant keywords.  

Figure 1 shows a graphical representation of these keywords and their links. In 
that figure, the nodes represent keywords; the bigger the node, the more frequent the 
keyword. Each color corresponds to a cluster of nodes, that is, a set of keywords that 
appear often together. The edges represent the co-occurrences of keywords; the thicker 
an edge is, the more the keywords co-occur. What we notice in Figure 1 is that among 
machine learning methods, deep learning is commonly used, and, in deep learning itself, 
CNNs are the most distinguishable. This interpretation of the bibliometrics validates 
choice of the focus of this survey. We also noticed that Sentinel-2 and Landsat satellite 
images, hyperspectral images, and UAV (Unmanned Aerial Vehicles) images appear very 
frequently. This validates the importance of these topics in this field as well. We are also 
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interested in knowing which agriculture-related problems could be solved with CNNs. To 
this end, we used the same method again to acquire bibliometrics about CNN applications 
in agriculture.  

We did another keyword-based search on the Web of Science and selected the 
papers with highest impact as well: [convolutional neural networks] AND [agriculture], 
and filtered the keywords of the resulting articles the same way we did for the first query. 
The corresponding bibliometric map is given in Figure 2. This map clearly shows 6 main 
categories for CNN applications: weed detection, disease detection, yield prediction, crop 
type classification, crop counting, and water management. Our survey will focus on these 
6 categories of CNN applications. We conducted a search for research articles that have 
a high impact or that are highly cited falling in these categories using Google Scholar and 
the Web of Science. Our search resulted in 35 papers that we describe in Table 4 and 
Table 5, and other studies that we analyzed deeply to describe the implementation and 
the evaluation techniques of their CNN models. 

Related work 

Several reviews and surveys studied machine learning in agriculture, especially the 
applications of CNNs in computer vision and remote sensing. For instance, Liakos et al., 
2018 presented a collection of machine learning models and algorithms that were 
categorized according to the problem they solved. They conducted their review on at least 
40 existing studies that were released in the period 2004 - 2018 and they categorized their 
findings into four main categories: livestock management, crop management, water 
management, and soil management. They found that methods such as clustering, decision 
trees, regression, neural networks, support vector machines, and Bayesian models, are 
used to perform crop monitoring tasks such as yield prediction (Amatya et al., 2016), 
disease detection (Moshou et al., 2014), weed detection (Pantazi et al., 2016), crop quality 
(Maione et al., 2016), and species recognition (Grinblat et al., 2016), in addition to other 
types of tasks related to water (Mehdizadeh et al., 2017), soil (Johann et al., 2016), 
livestock management (Pegorini et al., 2015). According to their findings, problems 
related to crops are more commonly solved using machine learning than problems related 
to water, soil, or livestock management. They also found that artificial and deep neural 
networks are used more than other machine learning methods. While their review covers 
approaches in solving different problems in agriculture using machine learning 
techniques, it does not focus on a single type of algorithms, such as CNNs in our case, 
nor does it specifically discuss multispectral remote sensing or image datasets. 

Kok et al., 2021 researched how Support Vector Machines (SVM) performed in 
precision agriculture. To do so, they first collected 60 research articles that employ SVM 
and other machine learning and deep learning models, then they proceeded to identify 
which model performed the best. The studies that they collected focused on six major 
fields of agriculture: nutrient estimation, disease detection, crop classification, yield 
estimation, quality classification, and weed detection. The authors concluded that SVM 
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performed lower than Random Forest in some fields and lower than deep learning 
methods in all fields. 

The reviews presented above, show that deep learning and CNNs outperform 
classical machine learning methods. This encourages the scientific community to keep 
improving and researching deep learning and CNN models in order to come up with 
innovative solutions to be used in real life scenarios. 

Kamilaris & Prenafeta-Boldú, 2018a reviewed CNN applications for agriculture. 
They searched on the Web of Science and Google Scholar based on keywords i.e., deep 
learning, agriculture, farmingand found and analyzed 23 scientific articles related to these 
topics. Next, they analyzed the solutions provided by each study, along with the 
methodologies and data employed to achieve these outcomes. They also presented how 
the approaches were evaluated and how they performed in comparison with other 
approaches. The addressed problems are the same as what other machine learning 
methods address: land cover, fruit counting, and other previously mentioned tasks. In 
addition to that, a small experiment on detecting missing vegetables in a sugar cane field 
using CNN was proposed. In their experiment, they used a VGG network (Simonyan & 
Zisserman, 2014), pretrained on ImageNet (Deng et al., 2009), and achieved 79.2% 
accuracy, which the authors considered low accuracy because of mislabeled images in 
their dataset. 

Kamilaris & Prenafeta-Boldú, 2018b published a review addressing the topic of 
deep learning in agriculture. The method they adopted to find their information is similar 
to Kamilaris & Prenafeta-Boldú, 2018a, but it also contained details on image 
preprocessing, image augmentation, and how deep learning models are evaluated. They 
also presented a list of studies that use deep learning to accomplish multiple agricultural 
tasks.They also provided a short list of 14 publicly available datasets related to images in 
agriculture without categorizing them. 

Other reviews focus more on one specific problem in agriculture. For example, J. 
Liu & Wang, 2021 wrote a literature review of the period 2014-2018 on deep learning 
methods to detect diseases and pests in plants. Their review aims to assist researchers in 
quickly understanding the methods used in this field. The authors detailed classification 
methods along with their advantages and their disadvantages. They also provided a list of 
13 datasets of plant diseases and pests different from those cited in Kamilaris & Prenafeta-
Boldú, 2018a. They found that deep learning (i.e., artificial neural networks and CNNs) 
performs better than classical image processing methods (i.e., Kmeans clustering, 
decision trees, support vector machines, K-Nearest Neighbors) in plant disease and pest 
detection. They concluded that there is still room to improve the models and datasets that 
are tested in laboratories before employing them on real world fields. 

Saleem et al., 2019 reviewed plant disease detection and classification with CNNs. 
They presented the CNN architectures that are used the most in the literature (not only in 
agriculture). Then, they provided a list of research articles that employ these CNN 
architectures, alongside with the datasets used. What distinguishes this review is that the 
authors also discussed visualization methods such as segmentation map, saliency map, 
heatmap, etc. According to them, more datasets containing images of plants in real 
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conditions in different scenarios are needed. The authors also recommended employing 
hyperspectral and multispectral imaging for training deep learning models in the early 
detection of plant diseases, as these technologies can identify the diseases before 
symptoms become visually apparent.Aside from disease detection in plants, Kamarudin 
et al., 2021 wrote a review on deep learning in plant water stress tasks such as 
evapotranspiration forecasting, plant water status estimation, water stress identification, 
soil moisture estimation, and soil water modeling. To acquire their data, they applied a 
method which consists in finding answers to a custom series of problems and questions. 
In that way, they found the data that were used to train deep learning methods, the 
architectures of deep learning models that were applied, and how these methods compared 
to classical ones in accomplishing the same tasks. Their findings indicated that even 
though deep learning is still in its early stages in water stress assessment, it outperforms 
other models and it is still subject to a lot of improvement. 

Other surveys focused on weed detection in crops using CNNs (Hasan et al., 2021; 
K. Hu et al., 2021; Z. Wu et al., 2021). Their reviews included CNN architectures and 
examples of publicly available datasets of weed management. Lu & Young, 2020 
dedicated a review on publicly available datasets on agriculture and categorized them into 
two main categories: weed management and fruit detection. They also defined a third 
category that gathers other uses such as flower detection, yield estimation, canopy species 
and biomass prediction, as well as damage and disease detection. 

According to the different reviews and surveys above, CNNs offer great solutions 
to problems in agriculture. While many earlier surveys have examined the applications of 
CNNs with an emphasis on specific uses, this paper offers a thorough review 
encompassing all relevant stages of employing CNNs in agriculture. This is particularly 
beneficial for newcomers to the field. We explain various methods of image acquisition, 
encompassing different types of image data with their respective advantages and 
drawbacks. Additionally, it provides a list of publicly available datasets used in different 
applications related to agriculture, serving as a resource for researchers seeking data for 
their studies. Then, we explain general and basic concepts about machine learning and 
specific ones about how CNNs are built. By covering all the study stages from image 
acquisition to model building and evaluation instead of focusing on one particular stage, 
we provide valuable resources that help in developing studies on the applications of CNNs 
in agriculture. 

Images in Agriculture 

CNNs are designed to process images; in this section, we present images that are acquired 
using different methods depending on the context, such as UAVs or satellites. We also 
present different types of images; RGB, multispectral images, and vegetation indexes that 
can derive from them. 
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Basic Image Acquisition 

Depending on the needs, the crop types and the fields that the studies focus on, image 
acquisition methods can differ. Images directly taken from fields have been used to train 
CNNs, for instance, Crop/Weed Field Image Dataset (Haug & Ostermann, 
2015)(CWFID), Early crop weed (Espejo-Garcia et al., 2020), and weedNet (Sa et al., 
2018), Sugar beets 2016 (Chebrolu et al., 2017) are some publicly available datasets of 
field images. 

 

a) b) c) 

d) e) f) 

Figure 3. Examples of agricultural images that can be used to train convolutional neural 
networks. Source: (a)&(d) (Hughes et al., 2015), (b)&(e) (Espejo-Garcia et al., 2020), 
(c)&(f) (Butte et al., 2021) 
 

Other images can consist of plants or leaves with plain background such as in 
PlantVillage (Hughes et al., 2015) and Rice Leaf Diseases Dataset (Prajapati et al., 2017). 
An advantage of having plain background in images is the reduction of noises in images 
and the increasing focus on plants (Figure 3). 

This type of images can be acquired from ground robots such as BoniRob 
(Ruckelshausen et al., 2009) as in CWFID (Haug & Ostermann, 2015) images and Sugar 
beets 2016 (Chebrolu et al., 2017). Other images such as the ones of PlantVillage (Hughes 
et al., 2015) are classical images taken with a digital camera under different weather 
conditions, sunny and cloudy days. 
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Aerial images taken few meters above the ground may be required in agriculture. 
For this, unmanned aerial vehicles (UAV) can be equipped with cameras or sensors to 
monitor agricultural fields. For example, the images of a multispectral potato plant image 
dataset (Butte et al., 2021) were taken with a drone flying at an altitude of 3 meters. UAV 
are helpful for short and low altitude image acquisition missions over agricultural lands, 
but they get quickly limited by their short battery life and their field of view. Satellites 
are a complimentary solution to UAVs by offering a broader coverage area and longer 
imaging periods that span to multiple years. Their capability to cover large areas of land 
in a single pass and their more advanced instruments makes them suitable for different 
and wider range of applications in agriculture that are not possible on UAVs. However, 
the quality of satellite images can be affected due to heavy cloud coverage that can occur 
for example. 

Multispectral Remote Sensing 

In addition to differences in acquisition methods, the electromagnetic spectrum range in 
which the images are taken can differ depending on the needs. The most common type of 
images is color images; theyare a combination of three different wavelengths of light: red, 
green and blue (RGB). A main advantage of RGB images is the simplicity in their 
acquisition. They do not require special equipment to be taken, normal phone or digital 
cameras are good enough to build agricultural datasets. For instance, PlantVillage 
(Hughes et al., 2015) is a famous dataset that contains RGB images captured with 
smartphones. 

RGB images visualize a wide range of colors and shapes, which is useful to 
analyze crop features. The colors of a plant can reveal a lot of information about its health. 
For example, a discoloration or distortion of leaves or fruits which is caused by diseases 
is directly seen in RGB images. RGB images contain spatial and visual information that 
can be exploited to deduce the state of a plant. 

RGB images only capture the spectrum of light that is visible to the human eyes. 
However, RGB images do not provide information about crop stress and diseases that are 
not observable. These mainly include abiotic diseases especially in their early stages, such 
as water stress, nutrient stress, bad soil quality, and high salinity. Searching for 
information beyond visible light is essential for a more effective analysis of crop images. 
Images that contain such information are known as multispectral images.  
 

Multispectral images are images that contain information of light across the 
electromagnetic spectrum that typically includes wavelength outside the visible range, 
such as near infrared (NIR) or shortwave infrared (SWIR), that commonly refer to the 
regions of light between 750 nm and 1400 nm, and 1400 nm and 3800 nm, respectively. 
Using multiple wavelengths provides valuable information about the composition, 
structure, and properties of crops or other objects. Healthy crops exhibit high reflectance 
of NIR light, distinguishing them from diseased plants or other objects (Vincent & 
Dardenne, 2021). Furthermore, SWIR light provides information about soil moisture 
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content, organic matter content, and water stress (Yue et al., 2019). Using the reflectance 
of vegetation and crop lands in NIR and SWIR is essential in agriculture due to the distinct 
responses exhibited by healthy and stressed vegetation or non-vegetation objects in these 
bands. 

In addition to providing valuable information about the composition and the 
structure of crops, multispectral images can also be used to compute various vegetation 
indexes. These indexes are mathematical formulas applied to various spectral information 
captured in different wavelengths. Vegetation indexes can bring more information to help 
assessing crop stress and health. One of the most widely used vegetation indexes is the 
Normalized Difference Vegetation Index (Rouse Jr et al., 1973) which compares the 
reflectance of NIR to red light in order to quantify biomass density and crop health. 

 Multispectral images are captured using special remote sensing instruments that 
are sensitive to particular wavelengths of light. Advanced remote sensing instruments are 
more commonly found on Earth Observation satellites rather than UAVs or ground 
vehicles. 

Satellite Imagery 

In agriculture, satellite images have shown success in accomplishing multiple functions. 
For instance, Phiri et al.(2020) gave an exhaustive list of agricultural uses in satellite 
imagery using Sentinel-2 satellites (Gatti & Bertolini, 2013). Their review contains 
multispectral satellite image uses in management of water, crops, soils, forests, 
grasslands, and fields. Other similar use cases include rice field mapping using satellite 
images and deep learning by Nguyen et al., 2020. Sishodia et al. (2020) provided more 
details in their review on water stress, evapotranspiration, soil moisture, nutrient 
management, disease management, weed management, and crop monitoring and yield. 
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Band Description Resolution(m) Wavelength(nm) 
B1 Coastal aerosol 30 430-450 
B2 Blue 30 450-510 
B3 Green 30 530-590 
B4 Red 30 640-670 
B5 Near infrared 30 850-880 
B6 Shortwave infrared 30 1570-1650 
B7 Shortwave infrared 30 2110-2290 
B8 Panchromatic 15 500-680 
B9 Cirrus 30 1360-1380 
B10 Thermal infrared 100 10600-11190 
B11 Thermal infrared 100 11500-12510 

Table 1. Landsat-8 multispectral bands 

Band Description Resolution(m) Wavelength(nm) 
B1 Ultra Blue 60 443 
B2 Blue 10 490 
B3 Green 10 560 
B4 Red 10 665 
B5 Visible and near 

infrared 
20 705 

B6 Visible and near 
infrared 

20 740 

B7 Visible and near 
infrared 

20 783 

B8 Visible and near 
infrared 

10 842 

B8A Visible and near 
infrared 

20 865 

B9 Shortwave infrared 60 940 
B10 Shortwave infrared 60 1375 
B11 Shortwave infrared 20 1610 
B12 Shortwave infrared 20 2190 

Table 2. Sentinel-2 multispectral bands 

Landsat-8 (Roy et al., 2014) and Sentinel-2 (Gatti & Bertolini, 2013) are two well 
known satellites in remote sensing. They are both Earth Observation satellites deployed 
in 2013 by NASA and in 2015 by ESA respectively. Data they captured is freely available 
online. Contrary to RGB images, images captured by Landsat-8 or Sentinel-2 satellites 
have more than 3 channels. Landsat-8 has 11 channels whereas Sentinel-2 has 13 
channels. Each channel represents a band, which is a part of the electromagnetic spectrum 
the satellites capture. In remote sensing, satellite bands are used to capture information of 
the Earth’s atmosphere and surface. Both Landsat-8 and Sentinel-2 capture light that 
ranges from the aerosol part of the electromagnetic spectrum to shortwave infrared while 
passing by the visible spectrum of light and near infrared.  
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Both satellites have a high-resolution panchromatic band which are B8-
Panchromatic and B8 for Landsat-8 and Sentinel-2 respectively. Panchromatic bands are 
used to create images with higher resolution. Sentinel-2’s bands generally have higher 
resolution than Landsat-8. For instance, most Sentinel-2’s bands have a resolution of 10 
m or 20 m while most of Landsat-8’s bands have a resolution of 30 m. A major difference 
is that Landsat-8 has thermal infrared bands that capture thermal radiation of the Earth’s 
surface whereas Sentinel-2 does not have such bands. Table 1 and Table 2 resume the 
properties of Landsat-8’s and Sentinel-2’s bands. 

Vegetation indexes 

Jackson & Huete (1991) defined vegetation indexes as spectral data combinations that 
characterize vegetation and its changes over time. Basic vegetation indexes include ratios, 
differences, sums and linear transformations of at least two spectral data. Bannari get al. 
(1995) presented a large selection of indexes and how they reveal more information than 
individual spectral bands, especially for green plants. Sun et al., 2021 presented a 
selection of indexes related to soil moisture. There are hundreds of vegetation indexes 
that are obtained from linear operations between spectral data and others that are 
computed with more complex operations such as logarithms (Serrano et al., 2002). This 
paper provides the description and the formulas of representative vegetation indexes in 
Appendix A. 

Vegetation indexes can be used when doing image processing using machine 
learning generally and CNNs specifically. For example, Yaloveha et al., 2022 used CNNs 
to do land cover mapping on EuroSat dataset (Helber et al., 2019) augmented with NDVI 
(Rouse Jr et al., 1973), NDWI (Gao, 1996), and GNDVI (Gitelson et al., 1996) and the 
accuracy that they obtained was higher than RGB images alone. Zhang et al. (2020) used 
high resolution NDVI for land cover mapping. Their method shows better performance 
when compared to other state-of-the-art methods. Weng et al., 2022 used a multispectral 
crop dataset from which they constructed a number of vegetation indexes that include the 
mentioned indexes: NDVI, SAVI (Huete, 1988), SR (Birth & McVey, 1968), NDWI; in 
addition to Red-Edge Chlorophyll Index (Thompson et al., 2019), Normalized Difference 
Red Edge Index (Thompson et al., 2019), Modified SAVI (Rouse Jr et al., 1973), and 
Green Chlorophyll Index (Thompson et al., 2019). Their method showed better 
performance than other methods such as Random Forest in crop classification tasks. 

The above studies show that adding vegetation indexes leads to better results than 
raw data. They also show that the suitability of vegetation indexes depends on the type of 
vegetation, soil moisture content, and atmospheric conditions. Different vegetation 
indexes have different purposes. For example, NDWI is more suitable in studies on water 
content than NDVI. Choosing or combining vegetation indexes depends on the study 
environment and the available data.  
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Dataset Size Type URL 
Weed management 
Food crops and weeds dataset 1118 RGB https: 

//data.mendeley.com/datasets/nj4vtk
4tt6/1 

CWF-788 788 RGB https://github.com/ZhangXG001/Re
al-Time-Crop-Recognition 

Crop vs weed discrimination 40 Multispectral https://lcas.lincoln.ac.uk/wp/researc
h/data-sets-software/crop-vs-weed-
discrimination-dataset/ 

Early crop weed 504 RGB https://github.com/AUAgroup/early
-crop-weed 

The GlassCover Image Dataset 39600 RGB https://vision.eng.au.dk/grass-
clover-dataset/ 

Rice seedlings and weeds 224 RGB https://figshare.com/articles/dataset/
rice_seedlings_and_weeds/7488830 

WeedNet 465 Mutlispectral https://github.com/inkyusa/weedNet 
Plant seedlings dataset 960 RGB https://vision.eng.au.dk/plant-

seedlings-dataset/ 
Soybean and weed dataset 15336 RGB https://data.mendeley.com/datasets/

3fmjm7ncc6/2 
Sugar beets 2016 300 Mutlispectral http://www.ipb.uni-

bonn.de/data/sugarbeets2016/ 
CWFID 60 Mutlispectral https://github.com/cwfid/dataset 
Plant disease detection 
PlantDoc 2598 RGB https://github.com/pratikkayal/Plant

Doc-Dataset 
New Plant Diseases Dataset 87000 RGB https://www.kaggle.com/datasets/vi

poooool/new-plant-diseases-dataset 
Maize disease 18222 RGB https://osf.io/p67rz/ 
PDDB 2326 RGB https://www.digipathos-

rep.cnptia.embrapa.br/ 
XDB 46513 RGB https://www.digipathos-

rep.cnptia.embrapa.br/ 
Rice Leaf Disease Dataset 120 RGB https://www.kaggle.com/datasets/vb

ookshelf/rice-leaf-diseases 
PlantVillage 50000 RGB https://data.mendeley.com/datasets/t

ywbtsjrjv/1 
Multispectal Potato Plants 3720 Mutlispectral https://www.webpages.uidaho.edu/v

akanski/Multispectral_Images_Data
set.html 

Crop and quality classification    
Fresh and Rotten Fruits 12335 RGB https://data.mendeley.com/datasets/

bdd69gyhv8/1 
FruitNet 14700 RGB https://data.mendeley.com/datasets/

b6fftwbr2v/1 
Pest detection    

https://github.com/ZhangXG001/Real-Time-Crop-Recognition
https://github.com/ZhangXG001/Real-Time-Crop-Recognition
https://github.com/ZhangXG001/Real-Time-Crop-Recognition
https://lcas.lincoln.ac.uk/wp/research/data-sets-software/crop-vs-weed-discrimination-dataset/
https://lcas.lincoln.ac.uk/wp/research/data-sets-software/crop-vs-weed-discrimination-dataset/
https://lcas.lincoln.ac.uk/wp/research/data-sets-software/crop-vs-weed-discrimination-dataset/
https://github.com/AUAgroup/early-crop-weed
https://github.com/AUAgroup/early-crop-weed
https://vision.eng.au.dk/grass-clover-dataset/
https://vision.eng.au.dk/grass-clover-dataset/
https://figshare.com/articles/dataset/rice_seedlings_and_weeds/7488830
https://figshare.com/articles/dataset/rice_seedlings_and_weeds/7488830
https://github.com/inkyusa/weedNet
https://vision.eng.au.dk/plant-seedlings-dataset/
https://vision.eng.au.dk/plant-seedlings-dataset/
https://data.mendeley.com/datasets/3fmjm7ncc6/2
https://data.mendeley.com/datasets/3fmjm7ncc6/2
http://www.ipb.uni-bonn.de/data/sugarbeets2016/
http://www.ipb.uni-bonn.de/data/sugarbeets2016/
https://github.com/cwfid/dataset
https://github.com/pratikkayal/PlantDoc-Dataset
https://github.com/pratikkayal/PlantDoc-Dataset
https://www.kaggle.com/datasets/vipoooool/new-plant-diseases-dataset
https://www.kaggle.com/datasets/vipoooool/new-plant-diseases-dataset
https://osf.io/p67rz/
https://www.digipathos-rep.cnptia.embrapa.br/
https://www.digipathos-rep.cnptia.embrapa.br/
https://www.digipathos-rep.cnptia.embrapa.br/
https://www.digipathos-rep.cnptia.embrapa.br/
https://www.kaggle.com/datasets/vbookshelf/rice-leaf-diseases
https://www.kaggle.com/datasets/vbookshelf/rice-leaf-diseases
https://data.mendeley.com/datasets/tywbtsjrjv/1
https://data.mendeley.com/datasets/tywbtsjrjv/1
https://www.webpages.uidaho.edu/vakanski/Multispectral_Images_Dataset.html
https://www.webpages.uidaho.edu/vakanski/Multispectral_Images_Dataset.html
https://www.webpages.uidaho.edu/vakanski/Multispectral_Images_Dataset.html
https://data.mendeley.com/datasets/bdd69gyhv8/1
https://data.mendeley.com/datasets/bdd69gyhv8/1
https://data.mendeley.com/datasets/b6fftwbr2v/1
https://data.mendeley.com/datasets/b6fftwbr2v/1
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Soybean leaf dataset 6140 RGB https://data.mendeley.com/datasets/
bycbh73438/1 

8 common tomato pests 
dataset 

609 RGB https://data.mendeley.com/datasets/
s62zm6djd2/1 

IP102 75000 RGB https://github.com/xpwu95/IP102 
Damage detection    
Sugarcane billets 152 RGB https://github.com/The77Lab/Sugar

caneBilletsDataset 
Yield prediction    
Date fruit dataset 8000 RGB https://ieee-dataport.org/open-

access/date-fruit-dataset-
automated-harvesting-and-visual-
yield-estimation 

Table 3. Public image datasets in weed management, plant disease detection, crop 
classification, pest detection, damage detection, and yield prediction. The columns show 
the dataset name, its size, its data type, and its download URL. 

Publicly available image datasets for agriculture related 

tasks 

For this section, we collected a large number of datasets related to agriculture. However, 
many datasets have been constructed without rigorous control and lack testing and 
reliability. Other datasets can be very similar to each other. Therefore, we selected 25 
image datasets that offer the most variety and are freely available online. The 
characteristics of datasets, such as the type of imaging device used, the resolution of the 
images, the number of images included in the dataset, types of annotations or labels, and 
other details may vary depending on the specific purpose or intended use of the dataset. 
Given that datasets for weed management and plant diseases are more present in the state 
of the art, we will describe them separately from other datasets. The datasets are presented 
in chronological order and their summary is in Table 3. 

Weed management datasets 

Food crops and weed (2020) 

Food crops and weeds dataset (Sudars et al., 2020) includes 1118 RGB images of six food 
crop species and eight weed species under different resolutions, i.e., 720x1280, 
1000x750, 640x480, 640x360, and 480x384 pixels. It also contains 7853 XML 
annotations used to generate bounding boxes. 

https://data.mendeley.com/datasets/bycbh73438/1
https://data.mendeley.com/datasets/bycbh73438/1
https://data.mendeley.com/datasets/s62zm6djd2/1
https://data.mendeley.com/datasets/s62zm6djd2/1
https://github.com/xpwu95/IP102
https://github.com/The77Lab/SugarcaneBilletsDataset
https://github.com/The77Lab/SugarcaneBilletsDataset
https://ieee-dataport.org/open-access/date-fruit-dataset-automated-harvesting-and-visual-yield-estimation
https://ieee-dataport.org/open-access/date-fruit-dataset-automated-harvesting-and-visual-yield-estimation
https://ieee-dataport.org/open-access/date-fruit-dataset-automated-harvesting-and-visual-yield-estimation
https://ieee-dataport.org/open-access/date-fruit-dataset-automated-harvesting-and-visual-yield-estimation
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Crop in weedy field (CWF-788) (2019) 

CWF-788 (Li et al., 2019) is a dataset of field images containing 788 images of 
cauliflowers in high weed presence. The dataset provides images of two resolutions: 
400x300 pixels and 512x384 pixels, in addition to pixel level annotation that represents 
a mask of crops without weeds. 

Crop vs weed discrimination dataset (2019) 

The images in this dataset (Bosilj et al., 2019) are acquired using an RGB camera and a 
NIR camera mounted 5 cm apart on a ground cart. The cameras produced high resolution 
(2464x2056 px) images of carrots (20 images) and onions (20 images) and to align the 
results of the two cameras, an adjustment step was needed, thus resulting in 2428x1985 
px images for carrots and 2419x1986 px images for onions. The dataset provides RGB 
and NIR as well as NDVI images and pixelwise annotations (crop, weed, soil/other). 

Early crop weed (2019)  

This dataset (Espejo-Garcia et al., 2020) dataset consists of RGB images of two crops 
(tomato and cotton) and two weed types (velvet leaf and black nightshade) taken at early 
crop growth stage. The dataset contains a total of 504 images taken at 1m above the 
ground in varying resolutions. Classification can be applied to these images to identify 
each type of plants. 

The GrassClover Image Dataset (2019)  

The GrassClover Image Dataset (Skovsen et al., 2019) has 8000 synthetic images 
annotated at pixel level and 31,600 unlabeled images, all in RGB. Among the annotated 
images, we distinguish six classes that are red clover, white clover, grass, weeds, soil and 
unknown. 

Rice seedlings and weeds (2019)  

This dataset (Ma et al., 2019) has 224 912x1024 pixels RGB images of rice seedlings in 
paddy fields combined with weeds at their early growth stages, captured by a camera that 
was 80 cm to 120 cm above the water surface. In the paddy fields, the rice seedling rows 
were separated by 30 cm and the plants themselves had 14 cm to 16 cm between them. 
The dataset is designed to be segmented and ground truth pixel annotation exists in a .mat 
file. Each pixel is classified as rice seedlings, weeds or background. 

WeedNet (2018)  

WeedNet dataset (Sa et al., 2018) contains images taken from a sugar beet field that were 
captured by a multispectral camera mounted on a UAV at 2 m above the plants. It has 
465 images divided into 132, 243 and 90 images of crops, weeds and a mixture of crops 



17 
 

and weeds respectively. Each image has a copy in Red, NIR and NDVI, and is annotated 
at pixel level for crops, weed and background (soil). 

Plant seedlings dataset (2017)  

Plant seedlings dataset (Giselsson et al., 2017) is a dataset of 960 high resolution 
(5184x3456 px) annotated RGB images of seedlings planted in styrofoam boxes. The 
images show 12 species at several growth stages with a physical resolution of 10 px/mm. 
Each image shows a unique species among: Maize, Common Wheat, Sugar Beet, 
Scentless Mayweed, Common Chickweed, Shepherds’ Purse, Cleavers, Redshank, 
Charlock, Fat Hen, Small-flowered Cranesbill, Field Pansy, Black-grass, and Loose 
Silky-bent. 

Soybean and weed dataset (2017)  

Images of soybean and weed dataset (dos Santos Ferreira et al., 2017) were captured with 
UAVs on a surface area of one hectare at an average altitude of 4 m above the ground. 
There are 3249 soil images, 7376 soybean images, 3520 grass images and 1191 broadleaf 
images, resulting in 15,336 images in total in RGB annotated at pixel level. 

Sugar beets 2016 (2016)  

This dataset (Chebrolu et al., 2017) was acquired by a field robot from early sugar beet 
plant emergence until their growth. The images are in PNG format with a resolution of 
1296x966 pixels in RGB and NIR. They are provided alongside their annotations to pixel 
level of sugar beets, nine types of weeds and background. The dataset provides around 
300 images and their annotations. 

Crop/Weed Field Image Dataset (2014) 

Crop/Weed Field Image Dataset (CWFID) (Haug & Ostermann, 2015) is a dataset for 
weed detection among carrot plants. It is composed of 60 images of 1296 x 966 pixels 
resolution that were captured using a multispectral camera mounted on a ground robot 
(Ruckelshausen et al., 2009) that captures visible and near infrared light (NIR). The 
images have 3 channels (Red-NIR-Red) and are annotated on pixel level on 3 channels. 
The first two channels have binary annotation and represent weed and crop presence 
respectively, and the third channel is always equal to 0, representing soil. 

Plant disease detection datasets 

PlantDoc (2020)  

PlantDoc (Singh et al., 2020) is a dataset of 2598 annotated field RGB images of 13 crop 
species and 17 types of diseases. The images are distributed across 27 classes of healthy 
crops and diseases specific to each crop type. This dataset was created to do leaf detection 
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and disease classification tasks in real-life conditions unlike PlantVillage (Hughes et al., 
2015) specifically. 

New Plant Diseases Dataset (2019) 

This dataset (Kaggle, 2019) is an augmented version of PlantVillage (Hughes et al., 2015) 
that contains 87,000 RGB images of healthy and unhealthy crops. 

Maize disease (2018)  

This dataset (Wiesner-Hanks & Brahimi, 2018) has 18,222 images of maize leaves that 
are labeled to detect damage caused by Northern Leaf Blight, which is a common disease 
that is devastating for maize. Among the images, 1787 have been taken with a handheld 
camera, 8766 with a boom camera, and 7669 with a drone. 

Image Database of Plant Disease Symptoms (PDDB) (2018)  

PDDB (Barbedo et al., 2018) has 2326 images of 171 diseases across 21 plant species. 
715 images are field images while the remaining 1611 are images captured in a controlled 
environment. An extended dataset called XDB has been created from subdivided PDDB 
images, resulting in 46,513 images. 

Rice Leaf Disease Data Set (2017)  

This dataset (Prajapati et al., 2017) contains 120 JPG images of rice leaf showing 3 types 
of diseases: leaf smut, brown spot, and bacterial leaf blight. The images are in RGB on a 
white background under direct sunlight and each class counts 40 instances. 

PlantVillage (2015)  

PlantVillage (Hughes et al., 2015) is a widely used dataset of over 50,000 RGB images 
of healthy and unhealthy leaf images across 38 crop species and types of diseases. It is 
designed to be used in classification tasks. The number of classes and their labels vary 
depending on the crop type, for instance, potato leaves are classified either as ”healthy”, 
”early blight”, or ”late blight”, while apple leaves are classified as ”healthy”, ”Cedar 
Rust”, ”Black Rot”, or ”Scab”. The images have a resolution of 256x256 pixels and the 
leaves are placed on plain background under different light conditions. The dataset is still 
evolving and is famous among classification studies. Many versions of PlantVillage exist 
with synthetic images as in (Pandian & Gopal, 2019) that has 61,486 images, or the New 
Plant Diseases Dataset (Kaggle, 2019). 

Multispectral Potato Plants Images  

This dataset (Butte et al., 2021) contains potato crop images in field capture by a drone. 
It is divided into 4 categories, all annotated with bounding boxes to detect healthy and 
stressed crops. The categories include 360 RGB images of 750x750 pixels resolution, an 



19 
 

augmented version containing 1500 images, 360 multispectral images of red, green, red-
edge, and near infrared of a 416x416 pixels resolution (360 images of each spectral band), 
and an augmented version of 1500 multispectral images. 

Others 

Crop classification: Fresh and Rotten Fruits Dataset (2022)  

Fresh and Rotten Fruits Dataset (Sultana et al., 2022) contains 12,335 augmented images 
of 16 types of fruit classes in two quality state: fresh or rotten. Originally there were 3200 
images on which they applied augmentation techniques that include: rotation, flipping, 
zooming, and shearing. This dataset is suitable to do crop type classification tasks by 
machine learning models. 

Crop classification: FruitNet (2021)  

FruitNet (Meshram & Patil, 2022) is a dataset of 6 different fruits of 3 qualities. Each 
image contains at least one fruit of the same type, which may be of good or bad quality, 
or there may be a mix of good and bad quality fruits in the image. The dataset contains 
more than 14,700 high quality 256x256 images of one of the following fruit classes: 
banana, apple, guava, lime, orange, and pomegranate. This dataset can be used to train, 
test, and validate models in quality or crop type classification tasks as well. 

Pest detection: Soybean leaf dataset (2022)  

This dataset (Mignoni et al., 2022) contains 6140 images that show healthy soybean 
leaves, or leaves that were damaged by caterpillars, or Diabrotica speciosa. The image 
are available in jpeg format of 500x500 size. Applying classification tasks on this dataset 
can help the detection of pests in a field, even if the pests are not in the images themselves. 

Pest detection: A database of eight common tomato pest images (2020)  

This dataset (M. Huang & Chuang, 2020) has 609 images of 8 types of common tomato 
pests: Tetranychus urticae, Bemisia argentifolii, Zeugodacus cucurbitae, Thrips palmi, 
Myzus persicae, Spodoptera litura, Spodoptera exigua, and Helicoverpa armigera. The 
images were augmented using 90, 180 and 270 degrees rotation, horizontal and vertical 
flip, and crop. The image augmentation result is a dataset of 299x299 pixel jpg RGB 
images. 

Pest Detection: IP102 - A Large-Scale Benchmark Dataset for Insect Pest 

Recognition (2019)  

This dataset (X. Wu et al., 2019) has more than 75,000 images of 102 insect type where 
19,000 images have bounding box annotations for object detection tasks. 
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Damage detection: Sugarcane billets (2018)  

Harvesting sugarcane using mechanized methods can induce damage to sugarcane billets, 
therefore the damage shown in this dataset is not caused by diseases, hence this category. 
This dataset (Alencastre-Miranda et al., 2018) provides images of 5 types of damage that 
sugarcane billets can sustain and images of undamaged ones, so in total 6 labels. This 
dataset contains 152 RGB images of high resolution (2448x2048 pixels) of sugarcane 
billets. 

Yield prediction: Date fruit dataset (2019)  

This dataset of (Altaheri et al., 2019) serves two purposes: crop type classification, and 
yield prediction. The dataset is divided into two sub-datasets. The first one has more than 
8000 labeled images of 5 date fruit varieties that can be used to train models on date fruit 
type classification. Whereas the second dataset has 152 images of date belonging to the 
same type, mainly destined to do yield prediction. 

Discussions 

In this section, we have presented datasets that are available online for different tasks of 
agriculture. However, it is important to note that there exist other datasets that are less 
accessible, known, or used in studies than the presented ones. We excluded datasets that 
are not public from this survey. For example, some of on-request datasets are 
AgricultureVision (Chiu et al., 2020) for land use analysis or Perennial ryegrass dataset 
(Yu, Schumann, et al., 2019) for weed detection. 
In addition to that, it is noticeable that datasets can have multiple purposes, e.g., crop type 
classification and yield prediction or crop type and quality classification. Datasets also 
have different properties. For example, some datasets also make use of vegetation indexes 
such as NDVI, while others include multispectral channels but without explicitly 
computing vegetation indexes. The environment conditions vary as well. For instance, 
some images are taken in laboratories, some others are taken in crop fields, and some 
datasets have synthetic images. 

There exist more datasets related to weed management than for yield prediction, 

damage detection, or soil moisture. The descriptions of the existing datasets offer an 

insight on dataset properties that can inspire dataset creators. 

CNN for agriculture 

In this section, we present 35 studies where CNNs are used in agriculture. The studies we 
present employ different methods to solve different problems. We categorized the 
addressed issues into 6 categories: weed detection, disease detection, yield prediction, 
crop type classification, crop counting, and water management. Some of the studies use 
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datasets that were previously presented in this review (Hughes et al., 2015) while others 
have their own private datasets (Hu et al., 2019a). This section offers a diversity of studies 
that show the extent of what can be done using CNNs. Weed detection and plant disease 
detection are very common in the literature (Kamilaris & Prenafeta-Boldú, 2018b, 2018a; 
Liakos et al., 2018) and there are a larger number of studies. Table 4 and Table 5 include 
additional studies. 

A brief on convolutional neural networks 

CNNs are a type of neural networks in deep learning that are powerful in image 
processing. CNNs are designed to learn and extract features within an image (O’Shea & 
Nash, 2015). 

Machine learning algorithms with images include three types of problem: 
classification (binary or multiclass), segmentation, and regression. Classificationaims to 
categorize images into predefined classes, either two (binary) or multiple (multiclass) 
(Chen et al., 2021). Segmentation involves the classification of each pixel within an image 
into a particular class (Minaee et al., 2020). In regression tasks, the goal is to predict a 
numerical value based on the image (Lathuilière et al., 2020). 

In agriculture applications, binary classification is used, for example, in detecting 
whether a plant is stressed or not. Identifying the type of disease a plant suffers from can 
be cast into a multiclass classification problem (Atila et al., 2021; Jiang et al., 2019). On 
the other hand, segmentation is used, for instance, to separate weeds from crops in an 
image (Sa et al., 2018). Finally, predicting yield or soil moisture content can be 
considered as a regression problem (Hegazi et al., 2023). Moreover, a specific task can 
be solved in multiple ways depending on the context. For example, detecting weed might 
consist in segmenting the image into regions that contain weeds and others that do not, or 
classifying the whole image as either weed containing or not. CNNs can be used to solve 
any of these three types of problems: classification, segmentation and regression. 

 

Figure 4a. General architecture of a CNN for multi-class classification. Here is the case 

of disease identification in a leaf image. The output is the type of diseases the leaf is 

showing or if it is healthy. 
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Figure 4b. General architecture of a CNN in the case of regression. Here is the example 
of yield prediction from an aerial or satellite image. The output is a numerical and 
continuous value that indicates the yield of the field in input. 

 

Figure 4c. General architecture of a CNN for image segmentation. In this case, the task 
is weed detection. Each pixel in the output image is classified as weeds (red), crops 
(green), or soil (black). Segmentation relies on an encoder-decoder architecture where 
all the layers are fully convolutional. 

Figure 4. Three types of architectures of CNNs, with an example of each. The input 
images can be RGB, multispectral, vegetation indexes, or a combination of these. The 
output and overall architecture varies depending on the problem. 
 

CNNs that solve these problems usually have similarities in their input and 
architecture but differ in their output. These architectures are presented in a simplified 
way in Figure 4. 

As seen in previous sections, CNN inputs are images that belong to different color 
spaces such as RGB, multispectral, vegetation indexes, or combinations of these. 

To process these images, CNNs typically have a combination of convolutional 
layers that that apply learnable filters (or kernels) to the input image. These kernels extract 
features from the images and produce a feature map during the process. Each kernel is a 
matrix of learnable values that are optimized during the training phase of the CNN. A 
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summed dot product is performed between the kernels and the input image in order to 
product an output value (O’Shea & Nash, 2015). 

Another type of layers that is usually found in CNNs is the pooling layer. Pooling 
layers reduce the dimensions of the image while preserving features. The pooling 
operation reduces the number of parameters of the model. Max-pooling and average-
pooling are two typical pooling methods used in CNNs (O’Shea & Nash, 2015). 

Contrary to traditional Artificial Neural Networks (ANNs) where each neuron is 
connected to all other neurons, each neuron of convolutional and pooling layers is 
connected to a small number of neurons around it, which effectively reduces the number 
of parameters and speeds up the convergence (O’Shea & Nash, 2015). Moreover, in 
traditional ANNs, more neurons are required to accommodate higher resolution images 
with multiple channels, and consequently the number of trainable parameters increases, 
which is not the case of CNNs which benefit from sliding kernels, weight sharing, and 
pooling layers (Z. Li et al., 2020; O’Shea & Nash, 2015). 

When solving classification or regression problems, it is necessary to convert the 
multidimensional image data into a single dimension array by using flattening layer. 
Typically, the result of the flattened layer is passed to one or several fully connected 
neural layers (Chen et al., 2021). 

On the other hand, segmentation applies classification on each pixel of the image 
rather than classifying the image as a whole. To accomplish this task, an encoder-decoder 
architecture is commonly used. A basic encoder includes convolutional and pooling 
layers and the decoder typically has upsampling and convolutional layers. Upsampling 
layers increase the resolution of the input image and they are seen as the opposite pooling 
layers. The decoder is optimized to create a segmented image from features extracted by 
the decoder. An encoder-decoder architecture is fully convolutional, all layers in the 
model are convolutional layers, i.e., there are no fully connected layers at the output of 
the network, which is the case of classification or regression (Sa et al., 2018). 

Evaluation metrics 

Evaluating CNNs is important to measure the model’s performance. Various metrics are 
used to evaluate the performance of a CNN (or any other machine learning model) 
depending on the task that they achieve (Kuhn & Johnson, 2013; Taha & Hanbury, 2015). 
These metrics vary depending on which task the CNN is performing. Below is a list of 
commonly used evaluation metrics in the literature (Agarwal, Singh, et al., 2020; Atila et 
al., 2021; Bosilj et al., 2020; Fawakherji et al., 2019; M & M.N, 2015; Srivastava et al., 
2022; Subeesh et al., 2022; Veeranampalayam Sivakumar et al., 2020; Yu, Schumann, et 
al., 2019).  

In classification (binary or multiclass): 

• FP, TP, FN, TN: these represent abbreviations of four possible outcomes of a 
classification prediction. False Positive (FP) or Negative (FN) is when the 
classifier incorrectly predicts the positive or negative class for an instance, 
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respectively. True Positive (TP) or Negative (TN) is when the classifier correctly 
predicts the positive or negative class for an instance, respectively. 

• Accuracy: rate of correct predictions.𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

 

• Precision: rate of true positive among all positive predictions.𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇
 

• Recall: (or sensitivity) rate of true positive predictions among all predictions 
that should be positives. 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇
 

• F1 score: harmonic mean of precision and recall. It provides a score that 
quantifies the trade-off between these two metrics. 𝐹𝐹1 = 2∗𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
 

• Specificity: rate of true negative among all predictions that should be 
negative.𝑆𝑆𝑆𝑆𝑃𝑃𝐴𝐴𝑃𝑃𝑆𝑆𝑃𝑃𝐴𝐴𝑃𝑃𝑆𝑆𝐴𝐴 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇
  

• Cohen’s Kappa coefficient (Cohen, 1960) : this score serves to measure the 
agreement between two evaluators when dealing with categorical items. Its 
advantage lies in its consideration of the possibility of agreement occuring by 
chance. 𝐾𝐾𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴 = 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑇𝑇𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎

1−𝑇𝑇𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎
 

• Matthews correlation coefficient (Phi): MCC is a statistical rate particularly 
useful in the context of imbalanced datasets. It gives a better assessment of 
classification than metrics such as accuracy and F1 score (Chicco & Jurman, 
2020).𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑇𝑇∗𝑇𝑇𝑇𝑇−𝐹𝐹𝑇𝑇∗𝐹𝐹𝑇𝑇

�(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)
 

 In multiclass classification, these metrics can be micro-averaged, which consists 
in summing up TP, FP, TN, and FN across all classes, and then computing metrics such 
as recall or precision based on these values. On the other hand, macro-average involves 
computing metrics for each class and then averaging them. 

In segmentation: 

• Intersection over Union (IoU): it is used to measure the overlap between the 
predicted and the ground truth segmentation. It is calculated by the following 
formula:𝐼𝐼𝑃𝑃𝐼𝐼 = 𝐴𝐴𝑃𝑃𝑃𝑃𝑅𝑅𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑜𝑜

𝐴𝐴𝑃𝑃𝑃𝑃𝑅𝑅union
  

Metrics such as accuracy, precision, recall, F1 score, specificity can also be used 
in segmentation because segmentation can be reduced to a pixel-wise classification task. 

 In regression:  

• Mean Squared Error: MSE measures the average squared difference between 
predicted and ground truth values and it commonly used to evaluate regression 
tasks.  
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• Mean Absolute Error: MAE is another metrics used in evaluating regression 
tasks. It measures the average absolute difference between the predicted and true 
values.  

• Root Mean Squared Error: RMSE is the square root of MSE. Interpreting the 
performance of the model in regression is easier with RMSE because its value is 
in the same units as the predicted and true values.  

These metrics are quality oriented which measure the quality of predictions that 
deep learning models make, e.g. CNNs. Other metrics measure the footprint of the 
models, such as their size, computational requirements, and energy consumption. Some 
of these metrics include: 

• Model Size: the memory required to store the model. 
• Inference Time: the time it takes to make predictions on new data. 
• FLOPS (FLoating-point Operations Per Second): the quantity of 

computational workload required during inference 
• Energy Consumption: an estimation of the power or energy consumption of the 

model during inference. 

Balancing quality and footprint metrics is crucial for efficient evaluation if CNN 
models. These metrics ensure an accurate model that is resource-efficient.  
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Reference Description Data Architectures Metrics 
Subeesh et 
al., 2022 

Weed identification in 
polyhouse grown bell 
peppers 

polyhouse RGB 
images 

AlexNet, 
GoogLeNet, 
InceptionV3, 
Xception 

Precision, 
Recall, F1 
score, 
Accuracy 

Razfar et 
al., 2022 

Weed detection in 
soybean plantations 

Soybean and weed 
dataset 

MobileNet, 
ResNet, custom 
CNNs 

Accuracy, 
Runtime, 
Memory usage 

Espejo-
Garcia et 
al., 2020 

Weed detection in 
early growth stage in 
field 

Early crop weed 
dataset 

Xception, 
InceptionResNe
t, MobileNet, 
DenseNet, 
VGG 

F1 score 

J. Gao et 
al., 2020 

Weed detection in 
sugar beet fields 

RGB images of 
sugar beet fields 

YOLO-v3, tiny 
YOLOv3 

Mean average 
precision 
(mAP) 

Veeranam
palayam 
Sivakumar 
et al., 2020 

UAV imagery for 
weed detection in 
soybean fields 

UAV images of 
soybean at 
different growth 
stages 

Faster RCNN, 
Single Shot 
Detector 

Precision, 
Recall, F1 
score, 
Intersection 
over Union 
(IoU) 

Bosilj et 
al., 2019 

Applying transfer 
learning to detect 
weed across different 
plant speciess 

Crop vs weed 
discrimination 
dataset 

SegNet Cohen’s kappa 
coefficient, 
Precision, 
Recall 

Petrich et 
al., 2020 

Detecting toxic 
flowering weeds in 
high quality drone 
images 

RGB drone 
images of sites 
containing weeds 

U-Net Precision, 
Recall, F2 
score 

Kounalaki
s et al., 
2019 

Transfer learning in 
weed detection in 
grasslands 

field images 
acquired by a 
robot 

AlexNet, VGG, 
InceptionV1, 
ResNet 

Accuracy, 
False Positive 
Rate, False 
Negative Rate, 
Precision, 
Recall 

Ma et al., 
2019 

Detecting weeds in 
paddy field images 

Rice seedlings and 
weeds dataset 

U-Net, FCN, 
SegNet 

Mean pixel 
accuracy, 
Mean 
Intersection 
over Union 

Yu, 
Schumann, 
et al., 2019 

Detecting several 
weed types in 
perennial ryegrass 

Perennial ryegrass 
and weed dataset 

AlexNet, 
GoogLeNet, 
VGG, 
DetectNet 

Precision, 
Recall, F1 
score, Phi 
coefficient 
(MCC) 

Yu, 
Sharpe, et 
al., 2019 

Detecting several 
weed types in 
bermudagrass 

Field images GoogLeNet, 
VGG, 
DetectNet 

Precision, 
Recall, F1 
score 

Fawakherj plant/soil RGB images with VGG-SegNet, Mean 
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i et al., 
2019 

segmentation and 
weed/crop 
classification on 
sunflower field images 
using transfer learning 

vegetation indexes U-Net, VGG-
UNet, BonNet, 
FCN8, VGG 

Intersection 
over Union, 
Accuracy, 
Sensitivity, 
Specificity, 
Precision 

Table 4. Research articles (reference and short description of the research objectives) 

that use CNNs in weed management along with the datasets, CNN architectures and the 

metrics used to train and evaluate their models. In studies that compare multiple CNNs, 

the model in bold has the best performance.. 

Weed detection 

Appropriate weed management results in higher yield (Soltani et al., 2016). Moreover, 
mapping weed in an area allows to control weed at early growth stages, hence, reducing 
the use of herbicides. However, weed detection is challenging because of their similar 
physical properties with food crops. 

Detecting weed using deep learning among food crops has gained research interest 
over the years. This is due to the increase in agricultural production to meet the needs of 
the rapidly expanding population faced with a heavy loss of crops due to weeds that can 
be up to 50% on some crops (Sothearith et al., 2021). The concept behind both 
segmentation and classification of crops is quite similar: identify and locate each plant 
within an image or pixel and classify it as either a plant or a weed. 

Suh et al., 2018 used a SegNet based (Badrinarayanan et al., 2017) CNN to 
segment a sugar beet field. They used images of 3 channels (NIR - Red - NDVI) from the 
weedNet dataset (Sa et al., 2018) as inputs to train the network, and the output was a map 
with pixel-wise annotation as crops, weeds, or background. 

Another segmentation task (Milioto et al., 2018) was accomplished differently by 
using 14 channel images as input, that includes: RGB, Excess Geen Index (ExG), Excess 
Red Index, Color Index of Vegetation Extraction, Normalized Difference Index, HSV, 
Sobel X, Sobel Y, Laplacian, and Canny Edge Detector, on ExG (W. Gao et al., 2010; 
Mlsna & Rodríguez, 2009; Song et al., 2017; Woebbecke et al., 1995). 

The authors showed that these channels improve the model’s performance in 
separating the vegetation from soil as well as speeding up the convergence process during 
training. The proposed CNN is a lightweight auto-encoder with less than 30,000 
parameters that can be used to do real-time segmentation when running in hardware that 
is attached on a ground or aerial robot for instance. 

In other studies (Czymmek et al., 2019; J. Gao et al., 2020; R. Zhang et al., 2020), 
YOLO-v3 (Redmon & Farhadi, 2018) or its variant tiny YOLO-v3 (Adarsh et al., 2020) 
or faster YOLO-v3 (Yin et al., 2020) were used. YOLO-v3 (You Only Look Once) is 
real-time object detection neural network, a variant of CNN, that predicts the bounding 
boxes and class probabilities in an image. It works by dividing the image into a grid of 
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cells where each one is responsible in detecting objects in its region of the image. 
Combining YOLO-v3 with UAV and a user interface, R. Zhang et al., 2020 showed the 
best performance related to real-time weed detection in videos at 45 frames per second 
(fps). 

In Table 4, we summarize the CNN architectures used in different studies. The 
best architectures are in bold. As we can see, it is difficult to determine whether there is 
a best architecture. Different studies suggest different best architectures. We found that 
accuracy and precision values are almost equal in most comparisons. We cannot conclude 
which models are the best, because they are tested in different environments. The results 
of an experiment depend on the hyperparameters, and other setup conditions that are 
employed (Koutsoukas et al., 2017). There is a lack of comprehensive study comparing 
all the available CNN architectures for tasks in agriculture. Also, the use of pretrained 
and fine-tuned state-of-the-art networks leads to better results than training from scratch 
(see Table 4 for examples of studies).  
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Reference Description Data Architectures Metrics 

Atila et al., 
2021 

Disease detection and 
classification in plant 
leaves using transfer 
learning 

PlantVillage EfficientNet, 
AlexNet, 
ResNet, VGG, 
InceptionV3 

Sensitivity, 
Specificity, 
Accuracy, 
Precision 

Agarwal et 
al., 2020 

Tomato crop disease 
identification 

PlantVillage light-VGG, 
VGG, 
InceptionV3, 
MobileNet 

Accuracy, F1 
score, Precision, 
Recall, True 
Positive Rate, 
False Positive 
Rate 

Barbedo, 
2019 

Plant disease 
classification 

PDDB and XDB GoogLeNet Accuracy 

G. Hu et 
al., 2019 

Identification of 
diseases in tea leaves 

RGB tea leaf 
images 

VGG Accuracy 

Jiang et 
al., 2019 

Real time detection 
and identification of 
apple leaf diseases 

Laboratory and 
field images of 
apple leaves 

AlexNet, 
GoogLeNet, 
InceptionV3, 
ResNet, VGG, 
VGG-
INCEPTION 

Accuracy 

Türkoğlu 
& Hanbay, 
2019 

Plant disease 
classification 

Plant disease and 
pest images 

AlexNet, VGG, 
GoogLeNet, 
ResNet, 
Inception, 
InceptionResNe
tv2, SqueezeNet 

Specificity, 
Sensitivity, F1 
score, Accuracy 

Zhong & 
Zhao, 
2020 

Apple leaf disease 
detection 

Images of apple 
leaves 

DenseNet Precision, 
Sensitivity, F1 
score 

K. Zhang 
et al., 2018 

Identiying tomato leaf 
diseases 

PlantVillage AlexNet, 
GoogLeNet, 
ResNet 

Accuracy, Time 

B. Liu et 
al., 2017 

Apple leaf diseases 
identification 

Apple leaf images AlexNet, 
GoogLeNet, 
ResNet, VGG  

Accuracy 

Amara et 
al., 2017 

Classification of 
banana leaf diseases 

RGB images of 
banana leaves in 
the field 

LeNet Accuracy, 
Precision, Recall, 
F1 score 

Table 5. Research articles that use CNNs in plant disease detection. Table structure and 
conventions are similar to Table 4. 

Disease detection 

Detecting plant diseases at early stages is important for several reasons. In fact, it can 
help farmers to control the spread of the disease, thus increasing agricultural productivity 
by avoiding reduced crop yields. Some plant diseases might also threaten food security 
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and the environment, leading ecosystem disrupt or soil erosion. 
Plants affected with diseases might show discoloration, wilting, blight, rust, leaf 

spots or other symptoms related to a change in plant phenotype. 

Deep learning approaches have been implemented to detect and classify diseased 
plants showing symptoms. Similarly to weed detection, some researchers have proposed 
real-time disease detection methods using CNNs (Jiang et al., 2019). Their approach 
involved collecting images of both diseased and healthy apple leaves to train a CNN that 
is based on SSD (Single shot multibox detector) (W. Liu et al., 2016) that they named 
INAR-SSD (SSD with Inception module and Rainbow concatenation (Jeong et al., 
2017)). Their network is designed to detect apple leaf diseases quickly and accurately, 
which could help apple growers to reduce crop loss and improve yield. INAR-SSD 
provided a better performance when it came to detecting small objects (small spots of 
apple leaf disease in their case) as compared to the original SSD that has difficulty in 
correctly detecting them. This is due to rainbow concatenation which concatenates 
multiple layer outputs before moving to classification. 

Türkoğlu & Hanbay, 2019 suggested two methods for plant disease and pest 
detection that they applied to their own dataset of 4000x6000 RGB images. First, they 
applied deep feature extraction from various fully connected layers. They extracted 
certain layers and feature vectors from the pretrained deep learning models (see Table 5). 
Then, they used three classifiers: Support Vector Machine (SVM) (Noble, 2006), K-
Nearest Neighbor (KNN) (Peterson, 2009), and Extreme learning machine (ELM) (G.-B. 
Huang et al., 2006) in the classification phase. They obtained the best performance with 
the architecture consisting of ResNet50+SVM at an accuracy of 97.86% ± 1.56. On the 
second hand, they used transfer learning of the same neural networks. They used pre-
trained models as a starting point for their problem then only changed the last three layers 
in order to adapt the models to their classification task. VGG16 was the best performing 
network with an accuracy score of 96.92% ± 1.26 . 

CNNs show promising results in detecting plant diseases. Most studies rely on 
crop leaves to diagnose a plant because in slight anomaly in the leaf color can be detected 
at early stages by CNNs. The choice of the architecture depends on the conditions of the 
study, real-time detection or high-resolution images for example. 

Yield prediction 

The detection of weeds and diseases in crops constitutes a major part of CNN applications 
in agriculture. However, there are various other uses of CNNs in this field as well. 

These applications include crop yield production for instance. Crop yield is the 
amount of crops that are harvested per unit area of land. In the following studies, it is 
shown that crop yield can be predicted from crop images. 

Nevavuori et al., 2019 used multispectral data acquired with a UAV equipped 
with a NIR sensor. In 2017, they selected nine different crop varieties of wheat and barley 
and took multispectral images of fields covering 90 hectares during the growth season 
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which spanned from June to August. They also acquired harvest yield data in September 
of the same year. The yield production can be directly measured by harvesting a sample 
of the crop and determining its weight per hectare (kg/ha). In order to obtain their dataset, 
they sub-sampled their data and shuffled it, resulting in approximately 15,200 images 
from which they took 15% for testing their model respectively. They further divide the 
other 85% into 3 subsets: training, validation, and testing, to apply k-fold cross-validation, 
which is a technique that partitions the data into k equal sized folds, and trains the model 
iteratively on k-1 folds while using the remaining fold for validation and testing, then, 
they test the resulting model on the initial testing set. Among the architecture tests they 
did, their best performing network had 5 convolutional layers of 64 kernels followed by 
batch normalization and ReLU then 1 convolutional layer of 128 kernels also followed 
by batch normalization, ReLU and max pooling. The output of the final convolutional 
layer is passed through two linear fully connected layers that each have a single output at 
the end which is the yield estimation in kg/ha. By training and testing their network on 
NDVI and RGB images separately, their results show that their model performed better 
on RGB images. 

Srivastava et al., 2022 proposed a custom CNN architecture that aggregates daily 
weather and meteorological data from 1999 to 2019 in Germany to predict winter wheat 
yield. Their proposed CNN uses 1D convolutions (Kiranyaz et al., 2021) on periodic 
numerical data. Their weather data included features such as minimum and maximum 
temperature, relative humidity, precipitation, solar radiation, and wind speed. They also 
used soil data such as soil categories, water availability, saturation point, and bulk density. 
For ground truth they relied on crop yield data that is recorded between 1999 and 2019. 
In addition to that, they used crop phenology data that describes the winter wheat (sowing, 
flowering, and harvested). Given that daily data over 20 years require a large number of 
parameters, the data were down-sampled by averaging and aggregating the values of 
weather features to 45 weekly samples. This reduced significantly the number of inputs 
to the model. Thus, on one hand, the CNN receives 45 samples of each weather feature, 
then it applies alternate convolutions and average pooling until the data becomes one-
dimensional. Then, the feature vectors are concatenated together to form one vector of 
weather features. On the other hand, soil and phenology data are concatenated and 
processed in an artificial neural network, then the output is concatenated to the weather 
feature vector. The newly created vector is then processed in several fully connected 
layers that predict the yield. The proposed model was compared to other machine learning 
algorithms that include Random Forest, K-Nearest Neighbors, LASSO and Ridge 
Regression, Regression Tree, Support Vector Regression, XGBoost, and Deep Neural 
Networks. It performed better than all the others when evaluated using MSE, RMSE, and 
correlation coefficient metrics. 

Although in-site measurements help predict crop yield, Khaki et al., 2020 had a 
different approach. They propose YieldNet, a model that has the ability to predict soybean 
and corn yield. They used temporal data of 30 multispectral satellite images taken during 
growing season provided by MODIS products. For yield data, they used data from 13 
American states that produce the most corn. Then, they focused on corn and soybean 
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lands by excluding non-croplands from satellites images with the help of the USDA-
NASS cropland data layers which offers land cover data based on satellite imagery. To 
avoid making a model with a large number of parameters because of the large yield data 
size, the data was discretized into bins, where a bin is a range of values. Thus, each image 
was reduced to a histogram of values that shows the frequency of pixel that fall into 
different bins. By concatenating the different histograms of the same field, an image that 
has Time x Bin as dimensions is constructed. By applying this to each band of the 
multispectral image, a cube of data is obtained, which is the input of the CNN. YieldNet 
has a backbone of 5 convolutional layers that produce an output that goes in two smaller 
CNNsswhich produce an output for each corn and soybean yield separately. YieldNet 
performed better than other machine learning methods such as Random Forest, Deep feed 
forward neural network, Regression Tree, LASSO, and Ridge. The metrics used in 
evaluation were mean absolute error, the root-mean-square error, and the correlation 
coefficient. It is more complicated to do yield prediction than weed or disease detection 
using CNNs. This is mainly due to the fact that yield cannot be directly predicted based 
on visual input alone, but it requires additional data such as in-situ measurements, 
multispectral data, temporal data, or meteorological data. The three studies presented 
above used different CNN methods and additional data to achieve yield prediction and 
succeeded to perform better than other traditional machine learning methods. 

Crop type classification 

In addition to yield prediction, crop type classification is an important task for precision 
agriculture, food security and smart farming. Crop type classification refers to detecting 
the presence of crops in an image and their species. Crop type classification is often 
applied to aerial or satellite images of whole fields in the context of land cover. Knowing 
the different types of plantations in fields helps crops management and monitoring, e.g. 
in food security (Kordi & Yousefi, 2022) . Kussul et al., 2017 conducted a study on a 
large area of 28,000km2 over Kyiv region of Ukraine as an attempt to classify 11 classes 
(water, forest, grassland, bare land, winter wheat, winter rapeseed, spring cereals, 
soybeans, maize, sunflowers and sugar beet). Images were acquired using Landsat-8 and 
Sentinel-1 images during the 2015 vegetation season that spans from October 2014 till 
September 2015. As for ground truth data, they conducted a ground survey and collected 
polygons of different classes that were divided equally between training and validation 
sets. Their approach started with preprocessing images to deal with missing data in cloudy 
area for instance. Then, they applied supervised classification using two different CNNs 
that explore spectral and spatial features, respectively. On average, the use of CNN 
reached an accuracy of 85% on major crops and as a final result, the CNN that explored 
spatial features outperformed the other one even though small objects were misclassified. 

In another similar study, Z. Sun et al., 2020 collected Landsat-8 images over North 
Dakota (USA) for model inputs and field surveys as well as roadside for ground truth 
labels. They calculated NDVI from band 4 and band 5 (Table 1) and counted pixels which 
NDVI values are greater that a threshold of 0.4. Then, they considered images from 2013, 
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2014 and 2015 as training images while images from 2016 and 2017 are testing images. 
The identified crops are: winter wheat, spring wheat, rice, corn, cotton, soybeans, barley, 
oata, peanuts, sorghum and range and pasture. The proposed network is based on the 
SegNet model (Badrinarayanan et al., 2017) with 7 input channels that are fed the 7 
Landsat bands and 132 output channels that represent the 132 crop classes that the USDA 
NASS crop classification system has. To increase the efficiency of the training, they took 
extra steps in input preprocessing by applying a sieve process by removing pixels that 
result from noises, thus, reducing uncertainties. Overall, they achieved more than 82% in 
accuracy. 

Crop type classification is vital for land cover analysis that employs remote 
sensing techniques and temporal satellites images to identify different crop types. As 
seen, CNNs are efficient in land cover over large areas in satellite images with a large 
number of classes. 

Crop counting 

Another task that is important in crop management is crop counting. It helps farmers to 
know the quantity of crops they have in their fields and thus it allows them to do better 
stock management and yield prediction. Crop counting tasks include counting entire crops 
or the fruits of plants. 

W. Li et al., 2016 used a satellite image of palm tree field in Malaysia that dates 
back to 2009. The image was captured by the QuickBird satellite which is a high-
resolution satellite with a 0.6m/pixel panchromatic black and white band and 4 2.4m/pixel 
multispectral bands (red, green, blue, and near infrared). For the study, they used a fusion 
of the 5 bands by applying the Gram-Schmidt fusion process (Laben & Brower, 2000). 
To create the dataset, they divided the initial image into 9000 RGB patches of 17x17 
pixels by using a sliding window of 17x17 in size and a step of three pixels. The size of 
the window was chosen experimentally in order to fit exactly one palm tree in the center 
of the patch. Then, they manually annotated the patches in palm tree samples and 
background samples and randomly selected 80% of the patches for the training set and 
20% for the test set. A patch is labeled as ”palm” only if it contains a palm tree in its 
center. Then, they used a LeNet (LeCun et al., 1998) architecture to achieve an average 
accuracy of 97%. When their network classified each sample, a postprocessing stage took 
place in order to merge the samples and add boundary circles around predicted palm trees. 

The above approach requires dividing an image into samples and then classifying 
the samples. However, Ribera et al., 2017 took another approach of the crop counting 
problem by considering it as a regression problem instead of a classification problem. In 
fact, they input images of sorghum plants into a CNN then a fully connected layer that 
has one output, that is the predicted number of crops. Experimentally they used 546x146 
pixels field images as inputs to a slightly modified version of InceptionV3 (Szegedy et 
al., 2015) where the last pooling layer was removed, resulting in the last convolution layer 
outputting a 2048x15x1 feature map that is then flattened and input to a fully connected 
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network. This method scored 6.7% in the Mean Absolute Percentage Error, making it a 
well-performing method. 

Rahnemoonfar & Sheppard, 2017 proposed a different method by training an 
Inception-ResNet (Szegedy et al., 2017) based neural network on synthetic images only. 
They artificially generated 24,000 images by creating a green and brown blurred 
background with different size red circles to simulate tomato plants in fields. They then 
tested their neural network on 100 real images of tomato plants and achieved an accuracy 
of 91%. This method can be applied for other sorts of plants when an image dataset is not 
easily available. 

Different approaches were taken in crop counting using CNNs. Some of them 
divided a satellite images into patches, while others used regression backed with 
convolution on whole images, or created fully synthetic images. Overall, CNNs have 
shown success in counting crops. 

Water management 

Lack of water for plants can lead to reduced yield or crop death, which is a concerning 
problem in agriculture, especially in regions facing drought. CNNs are used in water 
management for tasks such as estimating soil moisture and identifying water stress in 
crops. An et al., 2019 compared the performance of two CNN models: ResNet50 and 
ResNet152 (He et al., 2016) at identifying and classifying maize water stress. Their model 
identified whether maize plants had a light drought, a moderate drought, optimum 
moisture (normal growth). They trained their models on 640x480 RGB images of maize 
in fields under different light conditions at different times during the day. The pictures 
contained images of maize crops at two growth stages: seedling and jointing. Overall, 
they carried out their study on RGB images and their gray versions, at seedling and 
jointing stages, and with ResNet50 and ResNet152, with transfer learning and training 
from scratch. They found that RGB images performed better than gray ones and that 
transfer learning increased performance. Both CNN models performed well with little 
difference in accuracy but ResNet50 trained faster than ResNet152. Their models 
achieved 98.14% accuracy at identifying drought and 95.95% at classifying it. 

Chandel et al., 2021 used CNN architectures to detect water stress in three types 
of crops: maize, okra, and soybean. They compared GoogLeNet (Szegedy et al., 2015), 
AlexNet (Krizhevsky et al., 2017), and Inception V3 (Szegedy et al., 2016) at detecting 
whether field images of the three plants showed water stress or not. In their experiments, 
GoogLeNet performed better than Inception V3 and AlexNet for all three crops. 

Hegazi et al., 2023 proposed using Sentinel-2 images to predict soil moisture 
content. The authors solved this as a CNN-based regression problem. They compared 
multiple types of inputs to understand which one describes the best the soil moisture 
content. Their predictions were compared with ground truth values taken from soil 
moisture monitoring stations. The tested inputs are: Sentinel-2 bands individually, 
Sentinel-2 bands combined, NDVI, GVMI, NDWI, indexes combination (NDVI, GVMI, 
and NDWI), Sentinel-2 bands (Table 2) and indexes combination, Green-RedB8, B7-
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B8a-B11 S2 bands, B8-B11-B12 S2 bands, Green-Red-B8-B11-B12 S2 bands, B7-B8-
B8a-B11 S2 bands, and Red-B5-B6-B7-B8-B8a S2 bands. They found out that the ”Red-
B5-B6-B7-B8-B8a” does the best predictions of soil moisture content and that NDWI is 
the most sensitive to soil moisture when compared to NDVI and GVMI. 

In this category, we distinguish two types of methods in detecting water stress. 
The first one relies on the physical properties that appear on plants when they are stressed 
because of lack of water. In this case, the problem is similar to crop disease detection. 
The second one is studying the composition of the soil by looking at multispectral data. 
Water related vegetation indexes are very useful in this task. 

Discussion 

In this review, we presented remote sensing and CNNs for applications in agriculture. 

Images 

We discussed the different types of imaging techniques and image types used in 
agriculture. We showed the importance of multispectral imaging, especially in the NIR 
part of the electromagnetic spectrum.  

We also showed the importance of multispectral imaging especially in the NIR 
part of the electromagnetic spectrum. We explained how different types of images are 
exploited using CNNs in agriculture. Multispectral images and vegetation indexes have 
proven to improve CNN performance in most cases. Additionally, satellite images are 
very useful for temporal studies over large areas of land. We have focused on optical 
sensors but there are other types of sensors that were not discussed, such as radar or 
thermal sensors. 

We found that vegetation indexes are not exclusive to a single agricultural task, 
instead, they are used throughout all of them. However, this does not exclude the fact that 
some indexes are more useful than others in specific fields. For instance, water indexes 
are more useful to solve problems related to water issues, since they are specifically 
designed for this purpose. However, we did not come across any studies that evaluate 
how individual vegetation indexes perform across different agricultural tasks. Such study 
would give more insight into which agriculture task each index performs the best, which 
could lead to the development of more precise solutions. 

Datasets 

In order to illustrate examples of agriculture image datasets we listed and described 25 
datasets related to agriculture that are free and available online. We also mentioned other 
datasets that are private or inaccessible that were used in several studies. We gave 
examples of datasets that are intended to be used in different types of tasks (weed 
management, plant disease detection, crop and quality classification, pest detection, 
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damage detection, and yield prediction). 
We found out that PlantVillage (Hughes et al., 2015) is a very frequently used 

dataset. It is composed of more than 50,000 RGB labeled images of 256x256 pixels 
resolution, which makes it one of the largest datasets. It encompasses a variety of plants 
and threat types, which explains its popularity, especially when a big dataset is needed 
when using deep learning approaches. Most of the neural networks trained with 
PlantVillage had classification accuracy scores above 98%. However, Noyan, 2022 
demonstrated that his model classified PlantVillage image backgrounds with 49% 
accuracy, which is very high compared to random guessing and therefore the images 
contained bias. This means that we should be careful and aware of this bias when using 
this dataset. 

In agriculture, collecting a sufficiently diverse and balanced dataset is often 
challenging because of the time consuming and heavy nature of that task. This problem 
makes models struggle to generalize well enough to newly seen data. Data scarcity results 
in overfitting (Roelofs et al., 2019), where the models learn to only perform very well on 
the training images instead of learning patterns that are useful in real scenarios. To 
overcome this issue, image augmentation is applied (Roelofs et al., 2019), which is a way 
to artificially expand datasets by generating new images by transforming original ones. 
Simple image augmentation techniques such as image scaling, cropping, flipping, 
padding, rotation or translation and change of brightness, contrast, saturation or hue, add 
more samples in the dataset. Furthermore, data augmentation is also a way to introduce 
diversity that simulate different environmental conditions such as sunny or cloudy days. 
More advanced image augmentation techniques include Conditional Generative 
Adversarial Network (C-GAN) (Mirza & Osindero, 2014) which purpose is to generate 
synthetic images close to reality. Increasing the size of datasets by generating new images 
and including diversity exposes CNN models to more images, which makes their training 
more robust and their predictions more robus and closer to real scenarios.  
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Architecture # parameters Description Example 
InceptionV3 
(Szegedy et 
al., 2016) 

24 million 42 layers that are built 
on the inception 
module 

• https://github.com/josemenber/im
age-based-crop-anomaly-detection  

• https://github.com/angshumanroy
77/cropdiseaseclassification  

AlexNet 
(Krizhevsky et 
al., 2017) 

62.3 million 5 convoluional and 3 
pooling layers with 
ReLU activation 
followed by fully 
connected layers 

https://github.com/Dharmendra444/
Crop-Desease-Classification-
Using-Alexnet  

https://github.com/Prajwal1003199
9/Plant-Diseases-Classification-
using-AlexNet  

VGG16 
(Simonyan & 
Zisserman, 
2014) 

138 million A deep 16-layer 
model with stacked 
convolutional layers 
and pooling layers that 
feed 3 dense layers 

• https://github.com/anirudhjak06/
Crop-Disease-Detection  

• https://github.com/LeadingIndiaA
I/Weed-Detection-in-Dense-
Culture-using-Deep-Learning-  

ResNet50 
(He et al., 
2016) 

25 million Uses residual blocks 
to solve the vanishing 
gradient problem 

• https://github.com/josemenber/i
mage-based-crop-anomaly-
detection  

• https://github.com/shreyas-
muralidhara/Leaf-Wilting-
Classification-Transfer-Learning  

DenseNet121 
(G. Huang et 
al., 2017) 

7.6 million 121 layers where all 
layers are connected 
to each other 

• https://www.kaggle.com/code/m
arquis03/densenet-121-plants-
classification 

Unet 
(Ronneberger 
et al., 2015) 

30.1 million Encoder-decoder 
model that use skip 
connection to prevent 
resolution loss 

• https://www.kaggle.com/code/at
harvakadeth/farm-plot-detection-
unet  

Table 6. State-of-the-art CNN description with usage examples in agriculture (March 
19th 2024). 

Convolutional neural networks 

We listed at least 20 studies that use remote sensing and CNN in agriculture, and 
discussed the methods used at least in 15 others. By deeply analyzing these studies we 
pointed out that there is not a single general method to accomplish all tasks but it rather 
depends on the study’s goal.  

We also found out that transfer learning is a common practice that increases model 
performance. Transfer learning is an approach that leverages the knowledge of a 
pretrained model, which have already trained on extracting features and patterns in 
images of other datasets (Zhuang et al., 2021). By exploiting what the pretrained model 
has learnt, models effectively captured relevant features when trained on agricultural 
datasets, especially limited ones that contain few images. Transfer learning happens in 
two stages. The first one consists in training a model from scratch on a vast and general 

https://github.com/josemenber/image-based-crop-anomaly-detection
https://github.com/josemenber/image-based-crop-anomaly-detection
https://github.com/angshumanroy77/cropdiseaseclassification
https://github.com/angshumanroy77/cropdiseaseclassification
https://github.com/Dharmendra444/Crop-Desease-Classification-Using-Alexnet
https://github.com/Dharmendra444/Crop-Desease-Classification-Using-Alexnet
https://github.com/Dharmendra444/Crop-Desease-Classification-Using-Alexnet
https://github.com/Prajwal10031999/Plant-Diseases-Classification-using-AlexNet
https://github.com/Prajwal10031999/Plant-Diseases-Classification-using-AlexNet
https://github.com/Prajwal10031999/Plant-Diseases-Classification-using-AlexNet
https://github.com/anirudhjak06/Crop-Disease-Detection
https://github.com/anirudhjak06/Crop-Disease-Detection
https://github.com/LeadingIndiaAI/Weed-Detection-in-Dense-Culture-using-Deep-Learning-
https://github.com/LeadingIndiaAI/Weed-Detection-in-Dense-Culture-using-Deep-Learning-
https://github.com/LeadingIndiaAI/Weed-Detection-in-Dense-Culture-using-Deep-Learning-
https://github.com/josemenber/image-based-crop-anomaly-detection
https://github.com/josemenber/image-based-crop-anomaly-detection
https://github.com/josemenber/image-based-crop-anomaly-detection
https://github.com/shreyas-muralidhara/Leaf-Wilting-Classification-Transfer-Learning
https://github.com/shreyas-muralidhara/Leaf-Wilting-Classification-Transfer-Learning
https://github.com/shreyas-muralidhara/Leaf-Wilting-Classification-Transfer-Learning
https://www.kaggle.com/code/marquis03/densenet-121-plants-classification
https://www.kaggle.com/code/marquis03/densenet-121-plants-classification
https://www.kaggle.com/code/marquis03/densenet-121-plants-classification
https://www.kaggle.com/code/atharvakadeth/farm-plot-detection-unet
https://www.kaggle.com/code/atharvakadeth/farm-plot-detection-unet
https://www.kaggle.com/code/atharvakadeth/farm-plot-detection-unet
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dataset or importing one that is already pretrained. In the second stage, the same model is 
trained and specialized on the final dataset. 

We presented a set of studies that propose CNNs real-time detection where they 
are implemented in remote software on systems fit on drones or ground robots or cameras. 
R. Zhang et al., 2020 achieved a speed of 2fps with a mobile phone device, while Jeong 
et al., 2017; Jiang et al., 2019; Milioto et al., 2018 reached best records of 32.2fps, 35.0fps 
and 23.13fps, respectively, with more sophisticated hardware acceleration. CNN can 
achieve agricultural tasks in real-time on fields, which is expected to increase monitoring 
speed and productivity for farmers, food technologists, and agricultural engineers. 

We also notice that state-of-the-art CNNs from computer vision such as AlexNet 
(Krizhevsky et al., 2017), VGG (Simonyan & Zisserman, 2014), Inception (Szegedy et 
al., 2017), GoogLeNet (Szegedy et al., 2015), and ResNet (He et al., 2016) often appear 
in studies in agriculture. In this case, state-of-the-art CNNs refer to model architectures 
that incorporate an innovative design that often represents a cutting edge of research and 
development. Continuous research results in the evolution of CNNs over time as new 
technologies are proposed and validated through experimentation. In Table 6 we describe 
some state-of-the-art architectures and we provide examples in agriculture that use and 
implement them.  

The success of CNNs in computer vision inspired researchers to include the 
convolution operation in different deep learning families such as Graph Neural Networks 
(GNNs) (Zhou et al., 2020) which became Graph Convolutional Networks (GCNs) (S. 
Zhang et al., 2019). In the latter, the convolution operation is known as message passing, 
during which each node receives vectors of values from its neighbors in order to update 
its vector by aggregating them. Some studies used GCNs in agriculture to accomplish 
computer vision tasks, by considering the patches of an image as the nodes of a graph (K. 
Hu et al., 2020) or by representing the low-level features of an image as a graph (H. Jiang 
et al., 2020). Recently, more complex technologies gained a lot of popularity in computer 
vision, especially Transformers, which are based on the multi-head attention mechanism 
(Khan et al., 2022; Vaswani et al., 2023). 

Transformer models were initially designed to process text (Vaswani et al., 2023) 
and their success inspired their adaptation to computer vision, especially since 2020 
(Moutik et al., 2023). Despite their large success, it is still unclear if transformers are 
more performant and could replace CNNs (Pinto et al., 2022). In fact, studies have shown 
that recent CNN architectures can be as robust and reliable as transformers (Pinto et al., 
2022) and in some situations outperform them (Bai et al., 2021; Matsoukas et al., 2021; 
Pinto et al., 2022). It is difficult to determine which family of models is the best because 
of their similar performances and vulnerabilities (Deininger et al., 2022; Matsoukas et al., 
2021; Pinto et al., 2022). Some studies have suggested that using hybrid CNN-
transformer models is the best solution because these models could fill each others gaps 
(Moutik et al., 2023). Overall, there is no absolute best architecture, as their performance 
varies depending on the dataset, the hyperparameters, and the study context. Additionally, 
researchers sometimes develop CNNs that perform just as well as well-known state-of-
the-art CNN architectures.  
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CNNs, similarly to other deep learning models, often present a black box nature 
which is due to the large number of parameters that a model has and to the various 
hyperparameter combinations (X. Li et al., 2022). This makes explaining and interpreting 
the predictions and the decisions of a model more difficult. Interpretable deep learning 
aims to solve this problem by providing a set of tools that help interpreting deep learning 
models, for example, by visualizing the regions of importance of an image in computer 
vision (Linardatos et al., 2021). Various methods such as Gradients (Simonyan et al., 
2014), DeepLIFT (Shrikumar et al., 2017), Class Activation Maps (CAMs) (B. Zhou et 
al., 2016), Grad-CAM (Selvaraju et al., 2017), or Grad-CAM++ (Chattopadhay et al., 
2018), make it possible to interpret deep learning models (Linardatos et al., 2021). Having 
robust models with good performance is not enough, especially in critical applications of 
agriculture such as food safety, but trustworthiness and interpretation are also needed. 

Future perspectives 

Although CNNs showed good capabilities at accomplishing different applications in 
agriculture using different types of data, some challenges and questions remain prevalent. 
First, the interpretability of CNNs in agriculture remains a significant challenge that is 
not often addressed in research papers. Understanding how CNNs make their predictions 
by interpreting their decision-making process is important for improving their 
performance. Additionally, CNNs often have a large number of parameters and require a 
lot of computational power to do training. The computational cost in terms of energy of 
CNNs in agriculture has still to be considered in order to conclude on the energy 
efficiency of these models in this field. Additionally, CNNs were designed to process 
images but they can be used with numerical and non-image data as well (Srivastava et al., 
2022). In agriculture, a lot of data come from in-situ measurements, such as moisture 
content or pH, therefore, CNNs could be beneficial with multimodality in agriculture. 
Lastly, with the rapid emergence of advanced technologies, especially Transformers and 
GCNs, it is relevant to review the literature for use cases that employ CNNs in comparison 
with other technologies. 

 

Conclusion  

In this literature review, we discussed the importance of multispectral remote sensing and 
vegetation indexes, and we provided a list of different image datasets. We also presented 
how convolutional neural networks (CNNs) are useful in accomplishing tasks in 
agriculture. These tasks consist mainly of: weed detection, disease detection, crop type 
and quality classification, yield prediction, and water management. There is not an 
absolute best CNN architecture within each of these tasks nor is there a best one among 
all the tasks. Instead, current studies rely on a set of state-of-the-art CNN architectures 
that achieve good performance; data preprocessing is used to improve their results and 
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transfer learning or fine tuning is also considered. 
This review article summarizes the current state of utilization of CNN for 

agriculture applications. Moving forward, there is a need to run experiments on multiple 

tasks to compare different CNN architectures with additional features such as vegetation 

indexes in a more systematic manner. 
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VI Definition Formula 
Normalized 
Difference 
Vegetation Index 
(Rouse Jr et al., 
1973) 
  

This index is a measure of healthy, green 
vegetation. The combination of its 
normalized difference formulation and use 
of the highest absorption and reflectance 
regions of chlorophyll make it robust over 
a wide range of conditions 

𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼 =
𝑆𝑆800 − 𝑆𝑆680
𝑆𝑆800 + 𝑆𝑆680

 

Soil Adjusted 
Vegetation Index 
(Huete, 1988) 

This index is similar to NDVI, but it 
suppresses the effects of soil pixels. 𝑆𝑆𝐴𝐴𝑁𝑁𝐼𝐼 =

1.5 ∗ (𝑆𝑆800 − 𝑆𝑆680)
𝑆𝑆800 + 𝑆𝑆680 + 0.5

 

Leaf Area Index 
(Boegh et al., 2002) 

This index is used to estimate foliage 
cover and to forecast crop growth and 
yield. 

𝐿𝐿𝐴𝐴𝐼𝐼 = (3.618 ∗ 𝐸𝐸𝑁𝑁𝐼𝐼 − 0.118) > 0 

Difference 
Vegetation Index 
(Tucker, 1979) 

This index distinguishes between soil and 
vegetation 

𝑁𝑁𝑁𝑁𝐼𝐼 = 𝑆𝑆800 − 𝑆𝑆680 

Green Difference 
Vegetation Index 
(Sripada et al., 2006) 

This index was originally designed with 
color-infrared photography to predict 
nitrogren requirements for corn 

𝐺𝐺𝑁𝑁𝑁𝑁𝐼𝐼 = 𝑆𝑆800 − 𝑆𝑆555 

Enhanced 
Vegetation Index 
(A. Huete et al., 
2002) 

Improve the NDVI by optimizing the 
vegetation signal in LAI regions 

𝐸𝐸𝑁𝑁𝐼𝐼

=
2.5 ∗ 𝑆𝑆800 − 𝑆𝑆680

𝑆𝑆800 + 6 ∗ 𝑆𝑆680 − 7.5 ∗ 𝑆𝑆450 + 1
 

Simple Ratio 
(Birth & McVey, 
1968) 

This index is a ratio of (1) the wavelength 
with highest reflectance for vegetation and 
(2) the wavelength of the deepest 
chlorophyll absorption. 

𝑆𝑆𝑅𝑅 =
𝑆𝑆800
𝑆𝑆680

 

Normalized 
Difference Nitrogen 
Index 
(Serrano, Peñuelas, 
et al., 2002) 

This index is designed to estimate the 
relative amounts of nitrogen contained in 
vegetation canopies. 

𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼

=
𝑅𝑅𝑃𝑃𝑙𝑙 � 1

𝑆𝑆1510
� − 𝑅𝑅𝑃𝑃𝑙𝑙 � 1

𝑆𝑆1680
�

𝑅𝑅𝑃𝑃𝑙𝑙 � 1
𝑆𝑆1510

� + 𝑅𝑅𝑃𝑃𝑙𝑙 � 1
𝑆𝑆1680

�
 

Moisture Stress 
Index 
(Ceccato et al., 
2001) 

This index is a reflectance measurement 
that is sensitive to increasing leaf water 
content. 

𝑀𝑀𝑆𝑆𝐼𝐼 =
𝑆𝑆1599
𝑆𝑆819

 

Normalized 
Difference Water 
Index 
(B.-C. Gao, 1996) 

This index is sensitive to changes in 
vegetation canopy water content because 
reflectance at 857 nm and 1241 nm has 
similar but slightly different liquid water 
absorption properties. 

𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼 =
𝑆𝑆857 − 𝑆𝑆1241
𝑆𝑆857 + 𝑆𝑆1241

 

Normalized Multi-
band Drought Index 
(Wang et al., 2008) 

This index takes into account a soil 
moisture background to monitor potential 
drought conditions. 

𝑁𝑁𝑀𝑀𝑁𝑁𝐼𝐼 =
𝑆𝑆860 − (𝑆𝑆1640 − 𝑆𝑆2130)
𝑆𝑆860 + (𝑆𝑆1640 − 𝑆𝑆2130) 

Appendix A. A representative table of different vegetation indexes and their respective 
formula and description. 
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