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Abstract

We propose both a probabilistic fractal model and fractal dimen-
sion estimator for multi-spectral images. The model is based on the
widely-known fractional Brownian motion fractal model, extended to
the case of images with multiple spectral bands. The model is vali-
dated mathematically, under the assumption of statistically indepen-
dence of the spectral components. Using this model, we generated
several synthetic multi-spectral fractal images of varying complexity,
with 7 statistically-independent spectral bands at specific wavelengths
in the visible domain. The fractal dimension estimator is based on the
widely-used probabilistic box-counting classical approach extended to
the multivariate domain of multi-spectral images. We validated the
estimator on the previously-generated synthetic multi-spectral images
having fractal properties. Furthermore, we deployed the proposed
multi-spectral fractal image estimator for the complexity assessment
of real remotely-sensed data sets and showed the usefulness of the
proposed approach.

keywords: fractal dimension, box counting, multi-spectral fractal images,
remotely-sensed multi-spectral images

1 Introduction

Fractal geometry proposed by B. Mandelbrot in [37] triggered the computer-
based analysis of self-similar and scale-independent objects called fractals and
enabled its application in many domains. The fundamental fractal measure
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is the fractal dimension, defined to assess the roughness or the complexity of
such objects. To be more specific, the fractal dimension objectively quanti-
fies the variations of a fractal object, or a signal exhibiting fractal properties,
along the analysis scales [42]. The resulting fractal dimension is a scalar
comprised in the interval [E,E +1], where E is the topological dimension of
a scalar-value object. For a grey-scale image, the fractal dimension is com-
prised between 2 and 3, taking into account that the topological dimension
of the image support is E = 2. For an RGB color image, the color fractal
dimension should belong to the interval [E,E + 3], that is being comprised
between 2 and 5 according to [18]. By generalization, for multidimensional
signals and in particular for multi-spectral images, the fractal dimension
should be comprised between [E,E + M ], where M is the number of im-
age spectral bands [22]. The fractal dimension has been used in a plethora
of applications for the classification of signals or patterns exhibiting fractal
properties, like texture images [6], [33] or for image segmentation [20] [52]. In
the fields of remote sensing and Earth Observation, the fractal analysis was
used for noise characterization in SAR sea-ice images [45], while the fractal
dimension was used to correct scale [53].

The theoretical fractal dimension is the Hausdorff dimension [17], which
cannot be used in practice due to its definition for continuous objects. Con-
sequently, various estimators were proposed in order to allow the fractal
analysis for digital images with fractal properties: the similarity dimension
[37], the probability measure [51], [29], the Minkowski–Bouligand dimension,
also known as Minkowski dimension or box-counting dimension [14], the δ-
parallel body method also known as covering-blanket approach, morpholog-
ical covers or Minkowski sausage [39], the gliding box-counting algorithm
based on the box-counting approach [4], the fuzzy logic-based approaches
[5], [41], the pyramidal decomposition-based approach [3]. There exist also
various surveys on fractal estimators, like [25] and [47], as well as an attempt
to unify several existing approaches into a single one [31]. However, all these
approaches were designed for binary and grey-scale images and they are usu-
ally used without calibration or referencing to fractal images with known
fractal dimension.

Various attempts were made to extend the fractal dimension estimation
approaches to the multivariate image domain, starting with color and going
up to the multi-spectral. The initial approaches for defining fractal measures
for color images were marginal, considering each color channel independently
[38]. The probabilistic box-counting approach was extended for the complex-
ity assessment of color fractal images with independent color components and
its validity was proved first mathematically and then experimentally in [18].
Some limitations of this latter approach were underlined in [19]. In [55] the
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authors propose an approach based on the box counting paradigm, by divid-
ing the image in non-overlapping blocks and considering the pixel counting
in the RGB color domain, for both synthetic and natural images. In [40]
extensions of the differential box counting approach were proposed for RGB
color images, without a mathematical proof or a calibration. The approach
proposed in [21] allows for an extension to the multi-spectral image domain.
Recently, the fractal generation and fractal dimension estimation were ex-
tended to the multi-spectral image case [22], without a mathematical proof
of validity of the multi-spectral fractal image model.

The domain of multi-spectral and hyper-spectral imaging, which greatly
developed recently, requires the adaptation of existing tools of even the defini-
tion of new tools for image analysis. Multi-spectral and hyper-spectral imag-
ing allows for capturing higher-resolution spectral information for a scene,
covering sometimes both the visible and the infrared wavelength spectra. A
better spectral resolution can provide a deeper understanding of the mate-
rials and surfaces in the scene, in particular about the land cover objects
in an Earth Observation scenario [27]. Spectral imaging in a wider sense
is used in a wide variety of applications, such as agriculture [49][44], forest
management [43][16], geology [12][2] etc.

In this article we embrace the approach in [22], we describe it extensively,
we mathematically prove the conjecture in [22] and add more experimental
results both on synthetic and real multi-spectral images. More specifically,
in Section 2, we propose first the extension of the mid-point displacement
generation technique to the case of multi-spectral images with 7 spectral
bands; secondly we visualize the generated images using three different tech-
niques and then we prove mathematically the validity of the fractal model
for the generated synthetic multi-spectral fractal bands with statistically-
independent bands; in the end, we extend to the domain of multi-spectral
images the probabilistic box-counting approach for the estimation of the
fractal dimension. In Section 3 we tune the proposed approach on the gener-
ated synthetic multi-spectral images with 7 statistically-independent spectral
bands, in the attempt of reaching the theoretical fractal dimension of the re-
spective images. In Section 4 we estimate the fractal dimension of a real
satellite image and in Section 5 we draw the conclusions.

2 Proposed approach

2.1 Theoretical considerations

From [42], the fractal dimension of a gray-scale fractal image is:
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D = E + 1−H = 3−H (1)

where E = 2 is the topological dimension of the image support and H
is the Hurst coefficient which controls the complexity of the fractal object.
The Hurst coefficient takes values between 0 and 1, a small value indicating
a complex object and a great value indicating a less complex object.

From [18], it is obvious that for color fractal images with independent
color components, the color fractal dimension is:

Dcol = E + |RGB| − 3H = 5− 3H (2)

where |RGB| = 3 is the cardinal of the set of color channels and H is the
Hurst coefficient of each color plane, assuming that the color fractal image is
comprised of three color planes of the same complexity, thus the same value
of the Hurst coefficient.

Equation (2) offers a less complex alternative for the estimation of color
fractal dimension, based on the estimation of the Hurst parameter on the
gray-scale image representing the first principal component after computing
PCA on the color image data.

For the case of multi-spectral images with statistically-independent bands,
the theoretical fractal dimension should be:

DMSI = E +M −MH (3)

where M is the number of bands. For a multi-spectral fractal image
with E = 2 and M = 7 spectral bands (a septa-spectral image), like in the
experimental results presented in this paper, the theoretical fractal dimension
is:

D7SI = 9− 7H (4)

Consequently, in theory, the highest complexity of a multi-spectral image
with 7 spectral bands should be 9.

2.2 Fractal model extension to multi-spectral domain

Considering the conclusion in [18], one can extend the proposed approach
for generation of color fractal images to the domain of multi-spectral and,
perhaps, even hyper-spectral fractal images. Consequently, in this paper we
embraced the midpoint displacement algorithm for generating fractal images
based on the fractional Brownian motion model. We generated 3 multi-
spectral images of different complexity: low complexity (H = 0.9), mid
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complexity (H = 0.5) and high complexity (H = 0.1). For each of the 3
complexities, we generated 7 statistically-independent fractal images using
the midpoint displacement approach [42], each of them corresponding to a
wavelength or band in the resulting synthetic multi-spectral image. For the
three synthetic fractal multi-spectral images, we chose the following 7 wave-
lengths for the corresponding spectral bands: 450, 500, 550, 600, 650 and
700 nm, all of them in the visible spectrum. The choice of the wavelengths
was completely arbitrary and was done solely for visualization purposes. In
Figures 1, 2 and 3, from (a) to (g) we depict the 7 spectral bands (b1, b2 · · · b7)
of each of the three generated multi-spectral images. The random seeds used
in the generation process were the same for the three multi-spectral images
in order to generate similar terrain for the corresponding bands.

(a) b1 (b) b2 (c) b3 (d) b4 (e) b5

(f) b6 (g) b7

Figure 1: The 7 spectral bands of the MSI with low complexity (H = 0.9).
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(a) b1 (b) b2 (c) b3 (d) b4 (e) b5

(f) b6 (g) b7

Figure 2: The 7 spectral bands of the MSI with medium complexity (H =
0.5).

(a) b1 (b) b1 (c) b1 (d) b1 (e) b1

(f) b1 (g) b1

Figure 3: The 7 spectral bands of the MSI with high complexity (H = 0.1).

Next step is to assign each band in the generated multi-spectral fractal
images to a certain wavelength in the visible spectrum. We arbitrarily chose
the following mapping between the 7 bands of each multi-spectral fractal
image (Table 1) in order to produce the actual data cubes corresponding
to the synthetic multi-spectral fractal images and furthermore to be able to
visualize the multi-spectral images as color RGB composite images.
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b1 b2 b3 b4 b5 b6 b7
400nm 450nm 500nm 550nm 600nm 650nm 700nm

Table 1: The arbitrary mapping between the 7 generated bands and the
corresponding wavelengths.

In Figure 4 we show the resulting data cubes for the three generated multi-
spectral fractal images with 7 spectral bands. Note that the pseudo coloring
of each spectral band channel is used to illustrate the approximate position
of the corresponding wavelength on the lambda axis, does not necessarily
represent the actual color corresponding to the exact wavelength.

(a) Low complexity MSFI (b) Mid complexity MSFI (c) High complexity MSFI

Figure 4: The multi-spectral fractal images data cubes.

2.3 Visualization of multi-spectral images

There is a plethora of approaches regarding the multi-spectral and hyper-
spectral image visualization and choosing the most appropriate one is not
trivial, as the appropriate visualization can be of high importance for the
consequent analysis tasks [34]. The existing visualization approaches can be
categorized from the simplest band selection, to model-based approaches or
approaches based on digital image processing techniques, and up to more
recent methods using machine learning and deep learning paradigms [7].

Band selection consists of a mechanism of choosing three spectral bands
from the spectral image and mapping them as the red, green and blue chan-
nels in the resulting color image. The selection can be performed manually
by the user, as in software products such as ENVI [1] or automatically by un-
supervised approaches based on the one-bit transform (1BT) [9], normalized
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information (NI) [32], linear prediction (LP) or the minimum end member
abundance co-variance [46]. Another set of approaches deploy the principal
component analysis (PCA) for dimensionality reduction of the spectral image
data. The straightforward way is to map the first three principal components
to the R, G and B channels of the color image [50]. Other methods use PCA
as part of a more complex approach: in [8] an interactive visualization tech-
nique based on PCA, followed by convex optimization is proposed; in [30] the
color RGB image is obtained by fusing the spectral bands with saliency maps
obtained before and after applying PCA; in [27], the spectral image is de-
composed into two different layers (base and detail) through edge-preserving
filtering and dimensionality reduction is performed using PCA applied on the
base layer and a weighted averaging-based fusion on the detail layer, with the
final result being a combination of the two layers. Another set of approaches
are based on digital image processing techniques: [15] uses a multidimen-
sional scaling, followed by detail enhancement using a Laplacian pyramid;
[28] uses averaging in order to reduce the number of bands to 9, then a de-
colorization algorithm is applied on groups of three adjacent channels, thus
producing the final RGB color image; [54] is based on t-distributed stochastic
neighbor embedding (t-SNE) and bilateral filtering; [13] is also based on bi-
lateral filtering, combined with high-dynamic range processing; [36] describes
a pairwise-distances-analysis-driven visualization technique.

One approach we embrassed for the visualization of the generated syn-
thetic multi-spectral images is based on a linear model of color formation
proposed in [7]. In this approach, the resulting RGB triplet is obtain by
integrating the product of the spectral reflectance curve of each pixel and
the spectral sensitivity curve of a camera over the corresponding interval of
wavelengths in the visible spectrum. Other linear methods for visualization
exist: in [23] and [24], the RGB values are computed as projections of the
hyperspectral pixel values on a particular vector basis like a stretched version
of the CIE 1964 color matching functions, a constant-luma disc basis or an
unwrapped cosine basis.

Another approach we embraced for visualization is the one based on ar-
tificial neural networks trained to learn the correspondence between spectral
signatures and RGB triplets [7]. Spectral image visualization methods based
on machine learning or deep learning usually rely on a pair of matched im-
ages, one spectral and one color. The latter one is either obtained through
band selection from the spectral image or is independently captured by a dif-
ferent color image sensor. In remote sensing, the two images are registered
in order to represent the same geographical area. Such approaches include
constrained manifold learning [35], self-organizing maps [26], a moving least
squares framework [34], a multi-channel pulse-coupled neural network [11] or
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convolutional neural networks (CNNs) [10][48].
For each multi-spectral image, in Figures 5, 6 and 7, we show in (a)

the color RGB image obtained by using the band-selection technique. The
following wavelengths: 650, 550 and 450 nm were chosen for the R, G and
B channels, respectively, in order to produce the color RGB rendering of the
corresponding multi-spectral images. However, displaying a multi-spectral
image poses the problem of reducing the potentially-large number of bands
to just three color RGB channels in order for it to be rendered on a computer
monitor, while ensuring that the displayed information is meaningful from
the user point of view. In Figures 5, 6 and 7 (b) and (c) we depict the
RGB color images obtained using the linear model and the artificial neural
network approaches proposed in [7]. One can observe noticeable differences
between the three types of visualization results (including the band selection
approach). One reason is that the different visualization techniques tend to
produce different results, as one can observe in [7]. Another reason is that
the resulting multi-spectral pixel values in the synthetic fractal images have
high variability due to the randomness in the generation mechanism and the
statistical independence between bands, more than the variability of a natural
spectral signature resulting in the acquisition process of a real scene. Last
but not least, in all three cases the original information, which was more
complex, was reduced to less information (the dimensionality reduction is
from 7 spectral bands to only 3), so more than half of the information is lost
in the process of rendering the color RGB composite image.

(a) BS RGB (b) Lin RGB (c) ANN RGB

Figure 5: The RGB color composite images of MSI in Figure 1.
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(a) BS RGB (b) Lin RGB (c) ANN RGB

Figure 6: The RGB color composite images of MSI in Figure 2.

(a) BS RGB (b) Lin RGB (c) ANN RGB

Figure 7: The RGB color composite images of MSI in Figure 3.

2.4 Mathematical proof

Now for the generated synthetic fractal multi-spectral images the question
is: are they fractal objects? More concretely, is the variance of the incre-
ments resulted in the generation process obeying the fractal conditions? In
this section, the generation of multi-spectral fractal images with independent
spectral bands is validated mathematically, before showing its possible usage
in experiments. In [18] it is shown that the resulting color fractal images with
3 statistically independent color components obey the law of direct propor-
tionality of the variance of the increments. We shall take the same approach
for the multi-spectral fractal images with M independent bands.

For an object or signalX, having two spatial arguments andM -dimensional
vector values (i.e. for the M spectral bands), the variance of the vectorial
increments (considering an Euclidean distance between two samples of the
signal X) is the following:

σ2
i =


√√√√ M∑

k=1

[Xk(t1, t2)−Xk(s1, s2)]
2


2

(5)
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Raising the square root to the power of two in eq. (5) and taking into
account that the quantities under the square root are positive, one gets the
following expression:

σ2
i =

M∑
k=1

[Xk(t1, t2)−Xk(s1, s2)]
2 (6)

Now the statistical operator can be distributed to all the M terms, re-
gardless they are correlated or not:

σ2
i =

M∑
k=1

[Xk(t1, t2)−Xk(s1, s2)]
2 (7)

By identifying each term, it represents the marginal variance of the signal
X for each spectral band, respectively. They should be statistically indepen-
dent and, each of them, obeying the fractal law in the generation process,
assuming a Hurst coefficient identical for all spectra bands:

σ2
i ∝

(
2∑

i=1

(ti − si)
2

)H

(8)

Consequently, the variance of the vectorial increments of the X signal is
directly proportional to:

σ2
i ∝ M

(
2∑

i=1

(ti − si)
2

)H

∝

(
2∑

i=1

(ti − si)
2

)H

(9)

which proves that for a multi-spectral image withM statistically-independent
spectral bands, the variance of the M-dimensional increments obeys the self-
similarity statistical law in eq. (8), thus validating the generation of synthetic
multi-spectral images with fractal properties. In conclusion, we analytically
showed in eq. (9) that the multi-spectral fractal images with independent
spectral bands are also obeying the fractal law, consequently they are fractal
objects, enabling the estimation of their multi-spectral fractal dimension.

2.5 Fractal dimension estimation for multi-spectral im-
ages

We embraced the approach in [21], which allows extending the classical prob-
abilistic box-counting from 3 color channels to theoretically any number of
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spectral bands. In order to compute the N(δ) measure required for the frac-
tal dimension estimation, one has to adapt the analysis boxes for the multi-
spectral case. In Figure 8 we show the multi-spectral boxes of size δ = 3 and
δ = 5 for the case of multi-spectral images with 2 spatial coordinates and
M = 7 spectral bands.

(a) 3× 3× · · · × 3︸ ︷︷ ︸
9 times

(b) 5× 5× · · · × 5︸ ︷︷ ︸
9 times

(c) 7× 7× · · · × 7︸ ︷︷ ︸
9 times

Figure 8: The analysis boxes for size δ = 3, δ = 5 and δ = 7.

In Figure 9 we depict, in blue, the vector value of one randomly-chosen
reddish pixel in the multi-spectral image from Figure 4(b), illustrating, with
light grey, the box of size δ around the pixel’s spectral value. The box size is
very often varied from 3 to 41 in steps of 2 (i.e. only the odd-size boxes for
a simpler implementation). For a specific value of δ, in the estimation of the
N(δ) measure, and for a spectral pixel vector value S(λ), the upper and lower
δ-parallel covers indicating the limits of the analysis boxes (hyper-cubes) are
given by S(λ) + δ

2
and S(λ)− δ

2
, respectively.

One question emerging from this experimental setup is about the perti-
nence of the embraced fractal model with respect to the generation of multi-
spectral images with spectral pixel values corresponding to real spectra. Is
the spectral pixel value in Figure 9 a valid spectral signature, which could
represent a real remotely-sensed spectrum from a real scene on the surface of
the Earth? To a certain extent, the answer is yes. Given that a reddish pixel
was chosen from the lower-right corner of the multi-spectral image in Fig-
ure ??(b), the shape of the spectral pixel value is pertinent, showing higher
values corresponding to the interval corresponding to the red wavelengths.
Also, given the relatively large distances between spectral bands (i.e. 50 nm),
one can assume that the neighbor values in the spectral signature of the pix-
els are statistically-independent, which is the case in the embraced model.
Evidently, for the synthesis of fractal higher-spectral resolution images (like
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Figure 9: One pixel value (in blue) and the corresponding area between the
δ-parallel covers (for δ = 3, 5, 7).

hyper-spectral images), this assumption does not stand anymore.

3 Fine tuning the estimator

In order to experimentally test and validate the proposed approach, we con-
sidered the three generated multi-spectral fractal data cubes or images with
7 spectral bands in Figure 4, having a spatial resolution of 256× 256 pixels,
of varying fractal complexity (i.e. low, medium and high which translates
into a Hurst coefficient of 0.9, 0.5 and 0.1 respectively). As we mentioned in
the theoretical considertions, the fractal dimension of such a multi-spectral
fractal image should be comprised between 2 (the complexity of a plane for
a uni image or an image having the same color in every pixel) and 9 (the
highest achievable for a 9 dimensional image, i.e. 2+7, 2 spatial coordinates
plus 7 spectral coordinates). For the three synthetic multi-spectral images,
we ran the proposed probabilistic box-counting fractal dimension estimation
adapted to the multi-spectral case. The maximum analysis window size δmax

was varied for all three images from 41 to 101 in steps of 10. However, the
maximum analysis window was set to smaller values for the low and mid
complexity images, as a maximum window of 31 proved to be very large,
especially for the low complexity image. The threshold for the standard de-
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viation σth was varied from 10−4 to 10−10 in steps of 10−1. This standard
deviation refers to the extent to which the regression line slope estimation
approaches should agree on the N(δ) measure, which has a direct impact
on the fractal dimension estimation. For the three multi-spectral images we
obtained the numerical results presented in Tables 2, 3 and 4 for the low,
mid and high complexity, respectively.

PPPPPPPPPδmax

σth 10−4 10−5 10−6 10−7 10−8 10−9 10−10

7 2.2727 2.2727 2.2727 2.2727 2.2727 2.2727 2.2727
11 2.4790 2.7653 2.7653 2.7653 2.7653 2.6934 2.6934
21 2.5873 2.5578 2.5411 2.5308 2.5268 2.5268 2.5257
31 2.5393 2.5134 2.5134 2.5134 2.5083 2.5083 2.4816
41 2.5233 2.5065 2.5013 2.4965 2.4755 2.4755 2.4733
51 2.5014 2.4893 2.4839 2.4604 2.4574 2.4394 2.4394
61 2.4903 2.4786 2.4533 2.4471 2.4443 2.4164 2.4080
71 2.4702 2.4625 2.4468 2.4439 2.4414 2.4320 2.4214
81 2.4693 2.4613 2.4539 2.4473 2.4302 2.4269 2.4269
91 2.4773 2.4606 2.4469 2.4391 2.4321 2.3607 2.3651
101 2.4695 2.4397 2.4165 2.3596 2.3587 2.3587 2.3579

Table 2: The estimated multi-spectral fractal dimension (MFD) of multi-
spectral fractal image with low complexity (H = 0.9).

PPPPPPPPPδmax

σth 10−4 10−5 10−6 10−7 10−8 10−9 10−10

21 3.5975 3.8173 3.8173 3.9665 3.9665 3.9665 3.9665
31 4.1713 4.1713 4.2113 4.2113 4.2229 4.2229 4.2229
41 4.1952 4.2133 4.2133 4.2133 4.1150 4.1150 4.1150
51 4.1619 4.1619 4.1334 4.1157 3.9118 3.9118 3.9118
61 4.1040 4.1175 4.0941 3.9299 3.9299 3.6920 3.6920
71 4.0611 4.0737 4.0531 4.0342 3.5104 3.5104 3.5104
81 4.0154 4.0333 3.9957 3.9744 3.3457 3.3457 3.3287
91 3.9682 3.9682 3.9462 3.2035 3.1677 3.1677 3.1523
101 3.8944 3.9172 3.8935 3.0930 3.0742 3.0652 3.0572

Table 3: The estimated multi-spectral fractal dimension (MFD) of multi-
spectral fractal image with mid complexity (H = 0.5).

For the lowest complexity image, the highest achievable fractal dimension
is 2.7653 for δmax = 11 and for the standard deviation comprised between
10−5 and 10−8. For the mid complexity image, the highest achievable fractal
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PPPPPPPPPδmax

σth 10−4 10−5 10−6 10−7 10−8 10−9 10−10

41 0.7523 1.1958 4.5693 5.1281 5.1281 5.1281 5.1281
51 5.4481 5.8568 5.9662 5.9662 5.9662 5.9662 5.9662
61 5.7691 6.0965 6.4867 6.4867 6.4867 6.4867 6.4867
71 6.1941 6.5484 6.6172 6.6555 6.6555 6.6555 6.6555
81 6.5319 6.5319 6.5089 6.3486 6.3486 6.1297 6.1297
91 6.4054 6.4419 6.4574 6.4574 6.6636 6.6636 6.6636
101 6.3180 5.7551 5.2170 5.2170 5.0599 5.0599 5.0599

Table 4: The estimated multi-spectral fractal dimension (MFD) of multi-
spectral fractal image with high complexity (H = 0.1).

dimension is 4.229 for δmax = 31 and for the standard deviation comprised
between 10−8 and 10−10. Important to mention the fact that when setting a
threshold to such small values, the estimated fractal dimension is estimated
based only on 3 points in theN(δ) measure. A more reliable estimation would
be 4.2133 for δmax = 41 and for the standard deviation comprised between
10−5 and 10−7. For the high complexity image, the highest achievable fractal
dimension is 6.6636 for δmax = 91 and for the standard deviation comprised
between 10−8 and 10−10. Making the same observation as before, a more
confident estimation would be 6.6555 for δmax = 71 and for the standard
deviation comprised between 10−7 and 10−10. As a general observation, the
estimated fractal dimensions are indicating the correct ranking of the gener-
ated image complexity. In addition, as expected, the parameter δmax has to
be adapted to the complexity of the image, which in practical application of
the fractal estimation approach leads to a paradoxical situation: the fractal
dimension which is desired to be estimated, thus unknown, should be known
in order to set the correct parameter values for the estimator. Another im-
portant observation is that, comparing the current obtained results to the
one obtained for color fractal images in [21], the extra information due to
the additional 4 spectral bands, compared to the color RGB case, leads to
higher values of complexity.

In order to graphically observe the evolution of the estimated multi-
spectral fractal dimension, we present the corresponding plots in Figures
10 12 and 14 (the evolution as a function of δmax) and Figures 11 13 and 15
(the evolution as a function of σth), for the low, mid and high complexity,
respectively, for the common interval of parameter values (δmax from 41 to
101 and σth from 10−4 to 10−10). As a general observation, for the low and
mid complexity images, the tendency of the estimated multi-spectral fractal
dimension is to decrease with the increase of the maximum analysis window
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and the increase of precision for the agreement of regression lines estimators
(decrease of the standard deviation). However, this behavior in observed out-
side the most pertinent interval of values for δmax. A possible explanation for
the low performance of the estimator for large values of the maximum analy-
sis box size is the less statistically-significant data deployed in the regression
line estimation as a consequence of the smaller effective image area for which
the fractal analysis is performed (for δmax = 101 approximately 37% of the
pixels of the generated images are disregarded). If the image spatial resolu-
tion (i.e. the image size) would allow, increasing the size of the maximum
analysis box makes sense, given that the current estimator disregards the
small boxes and allocates more weight to the larger boxes. Especially, for
the high complexity fractal images, where the variations of the signals can be
very important, thus the need to adapt the maximum analysis window. For
the high complexity image, the variation of the analysis box size δmax show
that the mid range of values are the most pertinent for the estimation. For
the appropriate values of δmax, increasing the precision of the slope agreement
in the regression line estimators (thus diminishing the standard deviation) is
clearly improving the estimation, as the estimated multi-spectral dimension
increases.

Figure 10: The estimated multi-spectral fractal dimension as a function of
δmax for the low complexity (H = 0.9) multi-spectral fractal image.
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Figure 11: The estimated multi-spectral fractal dimension as a function of
σth for the low complexity (H = 0.9) multi-spectral fractal image.

4 Experimental results

The multi-spectral images used in our experiments are two crops (left upper
corner and right lower corner) of Pavia University hyper-spectral image, down
sampled in the spectral domain to only 7 spectral bands. Pavia University
data set is a 610 × 340 image, with a spectral resolution of 4nm and a spatial
resolution of 1.3 meters. The image has 103 bands in the 430-860 nm range.
The scene in the image contains a number of 9 materials according to the
provided ground truth, both natural and man-made. We selected 7 spectral
bands from the hyper-spectral data: 1, 14, 26, 39, 51, 64, 76, corresponding
to the 430, 482, 530, 582, 630, 682 and 730 nm wavelengths. We cropped
the left upper corner and the right lower corner of the image, so that the
spatial resolution is 256 × 256 pixels, similar to the one of the synthetic
fractal images used for validation (see Figures 16 and 17). The estimated
multi-spectral fractal dimension of the 7 spectral bands Pavia University
multi-spectral image crops is presented in Tables 5 and 6, for δmax varied
between 31 and 71 in steps of 10 and σth varied from 10−4 to 10−8 in steps of
10−1, i.e. the settings for the most confident estimation results considering
a parameter setting of the estimation tool for rather low to mid-complexity
images, for the considered Pavia University multi-spectral images.

For the left upper corner crop of Pavia University image, the maximum
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Figure 12: The estimated multi-spectral fractal dimension as a function of
δmax for the mid complexity (H = 0.5) multi-spectral fractal image.

estimated multi-spectral fractal dimension is 3.5072, while for the right lower
corner crop is 3.0456. The relative difference in complexity is obvious due to
the image content: the more complex image contains more colors and varia-
tions, with more objects present in the scene, while the less complex image
contains less colors, less objects and a larger area of small signal variations.
Consequently, the estimator clearly indicates the relative ranking of images
as a function of their complexity. Both images, though, by their complexity
are in the mid-low complexity range.

PPPPPPPPPδmax

σth 10−4 10−5 10−6 10−7 10−8

31 3.2891 3.3425 3.4251 3.4876 3.5405
41 3.4330 3.5144 3.4140 3.4140 3.4140
51 3.4891 3.5072 3.5072 3.2730 3.2730
61 3.3639 3.3863 3.3595 3.3595 3.0681
71 3.2634 3.2879 3.2879 2.4161 2.4161

Table 5: The estimated multi-spectral fractal dimension (MFD) of the Pavia
University multi-spectral image (left upper corner).
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Figure 13: The estimated multi-spectral fractal dimension as a function of
σth for the mid complexity (H = 0.5) multi-spectral fractal image.

5 Conclusions

We proposed both a generator and fractal dimension estimator for multi-
spectral images. The generator is based on the midpoint displacement algo-
rithm used for generating fractional Brownian motion and the estimator is
based on the classical probabilistic box-counting approach. The model for the
generated multi-spectral fractal images is proved mathematically and illus-
trated for the case of 7 statistically-independent spectral bands. The model
can be extended theoretically to an arbitrary number of spectral bands, as
long as the hypothesis of statistical independence between bands holds (which
may not be the case for high spectral resolution images, like hyper-spectral
images). For a qualitative evaluation, the resulting synthetic multi-spectral
data sets were visualized as color RGB composites using three different ap-
proaches: the widely-used band selection, using a linear model for the color
formation and deploying an artificial neural network which was previously
trained to learn the correspondences between the multi-spectral pixel signa-
tures and colors specified in the RGB color space. The estimator was adapted
to work on 9-dimensional fractal objects and we estimated the multi-spectral
fractal dimension of the generated synthetic multi-spectral fractal images.
The estimation requires the setting of the values for the parameters δmax

and σth, as they should be adapted to the envisaged complexity range of
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Figure 14: The estimated multi-spectral fractal dimension as a function of
δmax for the high complexity (H = 0.1) multi-spectral fractal image.

the images. We presented and interpreted the numerical results obtained in
the process of fine-tuning the estimator. However, for the high complexity
image, the desirable multi-spectral dimension of 8.3 is not yet achieved.

Furthermore, we used the proposed multi-spectral fractal dimension esti-
mator for the fractal complexity assessment of real images. We chose for ex-
periments the widely-known Pavia University hyper-spectral data set which
was first down sampled in the spectral domain from 103 spectral bands to
only 7 spectral bands, in order to fit to the spectral capabilities of the de-
signed estimator; secondly, the image was cropped so that the spatial res-
olution of the resulting images to be identical to the one of the generated
synthetic multi-spectral fractal images (256× 256). The dynamic range was
also scaled to the [0 − 255] interval, in order to have the same variation of
values on all 7 bands and in the same range as the spatial domain. The
obtained results are in accordance with the perceived complexity of the two
scenes. As future directions, the proposed multi-spectral fractal dimension
estimator can be used to estimate the local or global complexity of multi-
spectral images, for example in two types of applications—image classifica-
tion and image segmentation—, where the multi-spectral fractal dimension
can be used as a global or local feature, respectively, for multi-spectral tex-
ture characterization. The proposed model and estimator can be applied
on remotely-sensed data, like the multi-spectral images from the Sentinel 2
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Figure 15: The estimated multi-spectral fractal dimension as a function of
σth for the high complexity (H = 0.1) multi-spectral fractal image.

satellites of the Copernicus Earth Observation programme.
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