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Soil roughness, defined as the irregularities of the soil surface, yields significant 
information about soil water storage, infiltration and overland flow and, thus, is a key factor 
in characterizing the quality of the terrain; it is often used as input in many synthetic general 
agricultural models and in particular in soil moisture estimation models. In this paper, we 
propose a framework that combines a specific setup for data acquisition with deep 
convolutional networks for actual estimation. The former relies on projecting a line red 
laser beam on the analysed soil surface followed by digital image acquisition. The later, 
involves two convolutional models that are trained in a supervised manner to predict the 
roughness. The detailed evaluation showed that the error of the automatic precision lies in 
the range of ground truth deviation, thus validating the proposed procedure.   

Keywords: soil roughness, convolutional neural networks, VGG-11, ResNet-18 

Introduction 
The Remote Sensing (RS) domain opened incredible possibilities for the analysis and 
monitoring of the land cover of our planet. RS data from in-site, proximal or satellite level 
measurements offer precious information regarding the soil conditions, vegetation status 
or health of the agricultural crops. Agriculture 5.0 or shortly, AG5.0, fosters the latest 
cutting-edge technologies from various domains (Connoly, 2022), including the ones 
from the domain of Artificial Intelligence (AI) for smart decision-making processes: i) 
automatic estimation of site-specific soil or crop requirements in terms of  water and 
nutrients, ii) elaboration of farming strategies regarding the control of chemical and 
mechanical treatments, iii) yield and price estimation by deploying AI-based intelligent 
decision support systems and, last, but not least, future deployment of agri-robots to 
replace farmers for various tasks (e.g. sowing or harvesting) (Latief, 2021). AI-based 
transformation in agriculture aims at improving the traditional farming practices by 
automation and usage of nowadays technologies in order to reduce the intrinsic risks, 
enable sustainability and predictability for the final goal of enabling a more productive 
agriculture (Latief, 2021).  
In the AG5.0 context, the acquisition of information about the agricultural crops is 
performed at three levels: ground, aerial and satellite, for specific tasks of precision 
agriculture. Ground measurements, like chlorophyll level (Shapiro, 2013), sugar content 
of tubers and related parameters (NO3 – glucose, K, Ca2, Na+, pH), anthocyanin (Morris, 
2007), CO2 and H2O flux in photosynthesis process and related parameters (temperature, 
stomatal conductance, transpiration rate), can validate remotely-sensed data and allow the 
monitoring or agricultural crops and the localization of affected areas (e.g. by lack of 
water or nutrients, or by various pests).  Very often, indirect parameters are measured, 
such as vegetation indices (e.g. the Normalized Difference of Vegetation Index (Rouse, 
1973) or Leaf Area Index (Boegh, 2002)), which can reveal extremely useful information 
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about the plant vegetation status. Also at ground level, AI-based tools can enable 
automatic weed detection (Sasidharan, 2023). 
Agriculture is directly connected to soil and, consequently, the soil has to provide 
adequate physical and chemical conditions for the development of the crop, which finally 
impacts the yield. Various soil-related parameters are currently measured on a regular 
basis (Al-Kaisi, 2017): temperature, humidity or moisture, roughness, compactness and 
thermal or electrical conductivity (Skierucha, 2012). All these parameters provide 
information about the intrinsic qualities of the soil, the prerequisites for a good and 
healthy crop. Soil roughness (SR) is an important physical characteristic which affects 
various processes at soil level, the interpretation of remote sensing data, the prediction of 
other soil properties and influences short-wave solar radiation (Herodowicz & Piekarczyk, 
2018). SR determines the water and wind erosion, heat exchange, development of fauna 
and flora, soil surface temperature, moisture and air content in the soil and acts as input 
parameter to various prediction models (Herodowicz & Piekarczyk, 2018), like the 
RUSLE model for the soil erosion risk estimation (Prasannakumar et al, 2012) or the 
MMF model, its latest version, for the evaluation of the effects of crops and vegetation 
cover on soil erosion (Morgan and Duzant, 2008). 
SR quantifies the unevenness of soil surface caused by a plethora of factors such as 
farming practices (e.g. tillage operations), land management, climatic factors, soil texture 
and soil properties (e.g. formation of soil aggregates due to the presence of clay, iron 
oxide, organic carbon, calcium carbonate and moisture, as well as rock fragments and 
vegetation) or precipitations. The SR influences the wind and water erosion, infiltration 
and surface storage level (Vidal et al., 2005), (Amoah et al., 2013). It contains several 
separate indices that express distinct soil characteristics.  

The focus of this article is the estimation of SR parameter using remote sensing 
techniques. The SR expresses height variations at random locations on the soil surface 
(Burwell et al., 1963) and can be measured through contact or sensor measures. The 
pinboard (Allmaras et al., 1966) and chain (Saleh, 1993) methods are two popular contact 
methods while terrestrial laser scanning (Barneveld et al., 2013) is a non-destructive, non-
contact sensor method. Other sensor methods include: stereophotogrammetry (Aguilar, 
2009), terrestrial laser scanning (Barneveld, 2013), and adaptive depth detection by using 
Xtion Pro by Asus (Mankoff & Russo, 2013). A comparison of all these methods is 
available in (Thomsen, 2015). Due to the fact that the soil surface is randomly rough, 
some estimation methods are using fractal parameters (Moreno, 2010). Our previous 
work investigated the usage of fractal analysis of digital images for the evaluation of soil 
roughness complexity, especially taking into account the anisotropy of the soil surface 
(Marandskiy & Ivanovici, 2023). 
We performed various preliminary measurements using the chain, pinboard and Lidar-
based measurements, and we found that the most precise and reliable measurements are 
performed with the classical approaches (e.g. the Lidar image may be affected by 
geometrical distortions and its precision not enough to measure millimetre-level 
variations). The chain contact method employs a bicycle chain being placed on the surface 
and measuring the Euclidean distance between its ends with a ruler. In this case SR is 
calculated based on the chain roughness index Cr in eq. (1) (Saleh, 1993),  

𝐶𝐶𝐶𝐶 = �1 −
𝐿𝐿2

𝐿𝐿1
� × 100     (1) 

where L2 is the measured Euclidean distance between the chain ends while on the surface 
and L1 is the length of the stretched chain. In our measurements L2 = 1m and the chain 
link pitch is 12.5 mm. The pinboard contact method assumes multiple elevation 
measurements using a set of equidistant identical pins as depicted in Figure 1. SR is 
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computed as the standard deviation (SD) of the measurements after the elimination of 
slope effects (Cremers et al., 1996). Usually, classical contact methods are computed on 
1m2 areas, in several directions. However, we consider that approaches based on digital 
imaging are best suited for the estimation of SR, as they are most suited for the analysis 
of anisotropic surfaces and materials, which is the case of soil. In addition, measuring SR 
in different directions with classical approaches, followed by averaging, may lead to a 
misinterpretation of the experimental results (Marandskiy & Ivanovici, 2023). In our in-
lab and in-situ experiments, we determined that the pinboard measurements have the 
smaller error compared to the chain method, therefore we embraced the pinboard method 
as reference for all our experimentation, comparison and validation.  

In this article, we propose an AI-based approach for soil roughness estimation in 
digital images acquired with the help of a laser line to enhance the visibility of the soil 
profile. The research hypothesis is that an AI model is capable of learning, in a supervised 
way, the correspondence between digital images and SR measurements performed with a 
classical method (the pinboard in our case). The ultimate goal, which is not the purpose 
of the current article, is to propose a complete methodology or framework of SR 
estimation in digital images from a bird’s-eye-view perspective, without the usage of any 
other additional technology, like the laser line beam.  

The optimization in decision-making processes and automated analysis using 
tools from AI lead to appearance of the fifth-generation agriculture, or, as it is known, 
AG5.0. In this stage, the key improvement with respect to the fourth generation is the 
introduction and increased reliance on AI models. Moreover, the AI is offering promising 
results for data analysis in agriculture, as the Big Data available cannot be processed or 
analysed using the classical computational paradigms. AI-based solutions are being 
developed to learn and adapt based on accumulated experience, so that in the future will 
be able to take automatic actions purely based on data analysis. A detailed perspective on 
what is AI can be found in (Russell, 2010). 

Machine Learning (ML) is a particular type of AI mostly useful when the relation 
between causality, measurements and, respectively, the decision are not evident. Thus, 
data is acquired and the trainable system learns the input-output correspondence 
exemplified during the training process. The classical neural networks, which were 
milestones in the historical machine learning, evolved into the deep convolutional neural 
networks (LeCunn et al., 1998). Deep networks (Goodfellow et al., 2016) showed their 
proficiency especially when the input data are images, from RGB to multi- or hyper-
spectral ones. In the classical, non-deep model of learning, the features that describe the 
input images are manually selected and then the classifier is trained. In contrast, in the 
deep learning model, both the features and the network are jointly approached and have 
their weights (and contribution) determined automatically in the training process. 
Compared to their classical multilayer perceptron counterparts, deep convolutional 
network come with more depth which allows a better structuring of the information, 
feature which highly increases the efficiency in learning the information available in the 
training set. Following their won of the ILSVCR competition (Krizhevsky et al., 2012), 
convolutional neural networks (CNNs) become dominant in computer vision tasks, 
managing to overcome other learners in all problems where there is plenty of data. 

ML was previously used for the estimation of surface roughness, not necessarily 
soil but other types of surfaces in industry-related applications. For example, in (Palande 
et al, 2022), the surface roughness was estimated for milled surfaces using a stylus-based 
instrument and a linear regression model based on digital images. In (Elangovan et al, 
2015) the surface roughness is estimated also in a manufacturing context, using a multiple 
regression analysis. A similar manufacturing context is presented in (Zhang, 2021).  Of 
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particular interest for the agriculture context, soil roughness was estimated deploying ML 
and various input data. For instance, in (Singh et al, 2021) SR was estimated in satellite 
images, more specifically synthetic aperture radar images and a pinboard was used to 
measure SR in the field. In (Herodowicz-Mleczak et al, 2022) the SR is estimated based 
on a digital elevation model (DEM) which has to be estimated using various techniques, 
like the stereo-photography or by laser scanning, both of them requiring relatively 
expensive equipment. Alternatively, an RGB-depth camera could be used to produce a 
small-scale DEM of the soil surface, like in (Matranga et al, 2023). In (Herodowicz-
Mleczak et al, 2023) SR is computed based on proximal measurements of spectral 
reflectance in the VIS-NIR range, which requires the usage of a spectroradiometer, a 
high-value equipment.  

In this article we use two CNN models for learning the correspondence between 
digital images and the soil roughness estimates provided by a classical contact method. 
We use both grey-scale and colour images for the training of the two models, and in both 
cases the soil profile is highlighted by using a red laser line projected on the soil surface. 
For training, we created two custom data sets based on both synthetic and real soil 
samples. We present experimental results, their interpretation and conclude the paper. 

Materials and Methods 

Materials 
Our custom-made pinboard has 53 aluminium pins 33 cm in height. The inter-pin gap is 
½” = 1.25cm, identical to the distance between joints of the roller chain. The effective 
measurement line is 72 cm and the dynamic range for the height measurement is 20 cm 
(i.e. max. pin variation). The background of the pinboard is of millimetre paper to allow 
reading the pin’s heights in centimetres. The pinboard is shown in Figure 1, as well as its 
utilization for in-lab and in-situ measurements. In addition to the pinboard method, we 
used a red laser line projection on the soil samples, in order to emphasize the soil surface 
variations in the acquired digital images. The line laser source was placed above and 
perpendicular to the targeted surface. A Canon 5D Mark II digital camera was used for 
digital image acquisition, tilted at a 30˚ angle with respect to the surface horizontal plane. 
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Figure 1. Diagram of pinboard setup (top left), the pinboard calibration on a flat artificial surface 
(top right), in situ usage (bottom left) and red laser projection for soil profile emphasis on a 
synthetic surface (bottom right). 

 
We performed in-lab measurements on various artificial and real soil surfaces, as 

the ones depicted in Figure 2. The measurements implied the positioning of the pinboard 
on top of the soil surface and reading the height of each pin, provided the millimetre paper 
in the background of the pinboard. For the 53 read values, SR was computed as the 
standard deviation. The completely flat artificial surface allowed for the measurement 
error estimation (which is less than 1mm) and pinboard calibration since its SR has a 
theoretical 0 value and an actual value very close to 0 for both classical contact methods 
and the laser line beam results in an approximately straight projected line. The regular 
artificial surface (plastic) contains regularly-placed humps of identical shape. The cvasi-
regular artificial surface (painted cardboard for holding eggs) contains regularly-placed 
humps and dimples larger in scale and with small elevation random variations. The 
irregular artificial surface (uneven concrete) contains random relatively small elevation 
variations. For the real soil surface more measurements were performed due to its 
anisotropic nature. The measured SR values are presented in Table 1. These values were 
used when performing the supervised training of the CNN models considered in this 
article. 

Sample type Flat Regular Cvasi-regular Irregular Real soil 

SR values 0.094 0.271 1.011, 0.922 0.347 0.826 

Table 1. The SR values for the synthetic and real soil samples, as measured using the pinboard. 

 
Figure 2. The four types of artificial and real soil surfaces used for in-lab measurements. 

 
In order to create the data sets for training the AI models, a set of color digital 

images were acquired for the 5 soil samples. For the emphasis of the soil surface profile, 
we used a line laser projected on the soil surface. The laser source was placed in the same 
position as the middle pin, so that the laser beam was perpendicular to the surface and 
highlighted the same line as previously measured with the pins. The camera was placed 
on a tripod having the laser projection in the center on the image. The camera was tilted 
at 30 degrees with respect to the horizontal plane. The distribution of the 28 acquired 
colour images is 1, 4, 3, 10 and 10 for the flat, regular, cvasi-regular, irregular and real 
soil surfaces, respectively. From these images, two distinctive data sets were created. For 
the creation of the first data set, the following sequence of transformations was applied: 
cropping areas of interest of 1500 × 3000 pixels, scaling to 100 × 200 pixels, binarization 
and noise addition (Gaussian, speckle, salt and paper) for data augmentation. The result 
is a data set with 224 images from which 5 samples are depicted in Figure 3, one for each 
type of surface. For the creation of the second data set, from each original colour image 
5 areas of interest of size 1878 × 1878 pixels were first cropped. In each case, the set of 
square regions covered the entire length of the laser projection without uncovered areas. 
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The resulting 140 colour images are resized to 256 × 256 pixels. For the augmentation of 
the training data, the following sequence of transformations is applied to the resulting 
images: random crop of a 224 × 224 pixels region, 50% chance of horizontal flip, 50% 
chance of vertical flip, rotation around the image center with a random angle between -
5° and 5° and applying a random brightness scaling factor between 0.8 and 1.2. For the 
validation and testing only a 224 × 224 pixels central region crop is applied. 
 

 
Figure 3. Sample 100 × 200 pixels areas of interest cropped and scaled from RGB images of the 
projections of a red laser line beam on the surface samples from Figure 2 (top row), binarized 
(black and white) images (middle row) and grayscale images derived from the binarized ones by 
adding Gaussian noise of 0 mean and 1% variance (bottom row). 
 

 
Figure 4. Sample 256 × 256 pixels areas of interest cropped and scaled from RGB images of the 
projections of a red laser line beam on the surface samples from Figure 2 (top row), random 224 
× 224 pixels crops (bottom row) with the following random transformations (from left to right): 
random brightness scaling, vertical flip, horizontal flip plus random clockwise rotation and 
random brightness scaling, random clockwise rotation and horizontal flip.   

Methods 
We employed a machine learning framework. In particular, this framework is based on 
deep learning and such a model receives at input an image from the dataset and has to 
predict the value of soil roughness of the said image. We embraced two CNN 
architectures – VGG-11 (Simonyan & Zisserman, 2015) and ResNet-18 (He et al., 2016). 
We have chosen these models because they are representative for the two types of 
connectivity used in deep networks models. These two types are related to the amount of 
information in the target database. Architecture like VGG (without skip-connections) 
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having their weights pre-trained are to be preferred on databases with limited information 
since the pre-trained values of the weights offer a very good starting point. In contrast, 
for databases with more information, networks that use skip-connection to address the 
problems of vanishing gradients are to be preferred since the skip-connections offer better 
gradient flow during training, and weights are learned better. Since, before exploring in 
training-testing, due to unperceived redundancy, one cannot accurately determine the 
amount of information in a database, selecting one model from each category allows 
exploring more thoroughly the database. Both models have been tested in a software-only 
approach, while the former one was chosen as golden model for the hardware 
implementation (Feldioreanu et al., 2023).  

VGG-11 

The first CNN model is based on the VGG-11 architecture proposed in (Simonyan & 
Zisserman, 2015) which has 8 convolutional and 3 fully connected layers. Our model has 
several modifications such as the input layer size (implicitly this causes changed sizes for 
all the other layers) and the number of neurons in the last fully connected layer. The VGG 
models are known to be the largest deep network (i.e with most parameters) that avoids 
skip-connections. They became popular due to their structured choice for stacking 
convolutional layers and many parameters involved. Therefore, they are particularly 
suitable for problems which have limited data, but also do have enough complexity to 
overcome classical, non-deep, models. Its detailed architecture is depicted in Figure 5. 
All convolutions use a receptive field of 3 which moves with a stride of 1 while the input 
3D volume is zero-padded with 1 pixel. Max-pooling is executed over a 2 × 2 pixels 
window which moves with a stride of 2.  
 

 
Figure 5. The architecture of our VGG-11 model. 

ResNet-18 
Yet the VGG neural network models, in the last years, became less popular due to 
limitations introduced by the vanishing gradient problem (He et al., 2016). This issue 
refers to the exponentially diminishing gradient magnitude with the increase of the 
numbers of layers in the network (i.e. with depth); a very deep network has very small 
gradient magnitude in the backpropagation algorithm for the weights in the layers near 
the input; thus, it requires very large databases and longer training of the model to provide 
significant corrections in the learning process. This problem noted a significant 
alleviation within skip-connection (known, here, as residual connection) introduced by 
He et al. (2016). The skip-connection implements an identity map and allows high 
magnitude gradient to be injected directly into layers nearer the input. An immediate 
consequence was that networks become deeper, with more layers but less weights, and, 
more importantly, with increased performance. Residual networks (Resnet) family 
contains many models marked by the number of layers used. More recent derivations 
improve the performance adding aggregated residual transformation (ResNetXt family) 
(Xie et al., 2017) (Hu et al., 2018). 
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Our CNN model based on the ResNet-18 model architecture proposed in (Xie et 
al., 2017) which has 17 convolutional layers and only one fully connected layer and is 
depicted in Figure 6. Our sole modification is the number of neurons of the fully 
connected layer. 

 

 
Figure 6. The architecture of our ResNet-18 model. 

Results 

In this section we present the experimental results we obtained with the two deep 
convolutional models. The models have been implemented in PyTorch (Paszke et al. 
2019).  

Results for VGG-11 

For the training of the VGG-11 we used the first data set comprising 224 grayscale images 
of 200 x 100 pixels. We used 144 images (64.28%) for training, 40 images (17.86%) for 
validation and 40 images (17.86%) for testing. The VGG-11 was trained for 145 epochs, 
in a supervised way, using the Stochastic Gradient Descent (SGD) optimizer with a Mean 
Square Error (MSE) loss function, a momentum of 0.9 and an initial learning rate of 
0.021. ReduceLROnPlateau learning rate scheduler with a factor of 0.1 and a patience of 
20 was deployed; this means that the loss function value over the training set is monitored, 
and when it stops improving for a number of “patience” epochs, one assumes that it has 
reached the minimum within “learning_rate x magnitude_of_loss_gradient” range. To 
improve, the learning rate is reduced by “factor”, thus diminishing the reachable distance 
to the minimum of the loss function. The training and validation loss per each epoch are 
depicted in Figure 7, on a logarithmic scale. The green trace represents the average 
validation loss for the previous 10 epochs. The CNN yields MSEs of 0.000014, 0.000075 
and 0.001651 on the train, validation and test data sets, respectively. On the test set, the 
mean absolute percentage error (MAPE) (Myttenaere et al., 2016) for the pinboard SR 
prediction is 5.28% which corresponds to an accuracy of 94.72%. MAPE is calculated as 
in eq. (2) 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑁𝑁
∑ �𝑃𝑃𝑖𝑖−𝐴𝐴𝑖𝑖

𝐴𝐴𝑖𝑖
�𝑁𝑁

𝑖𝑖=1 × 100 [%],    (2) 

where Pi is the predicted value and Ai is the actual SR value. Preliminary results were 
reported in (Popa et al., 2023).  
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Figure 7. VGG-11 training and validation loss per epoch (logarithmic vertical scale). The green 
line represents the moving average computed on an arbitrarily-chosen window size, in order to 
emphasize the decreasing tendency of the validation loss despite its large variations. 

Results for ResNet-18 

For the training of the ResNet-18 we used the second data set comprising of 140 RGB 
images of 256 x 256 pixels. We randomly selected 100 images (71.42%) for training, 20 
(14.29%) for validation and 20 (14.29%) for testing. The ResNet-18 was trained for 200 
epochs, in a supervised way, using the SGD optimizer with an MSE loss function, a 
momentum of 0.9 and various initial learning rates. Cosine Annealing (Loshchilov & 
Hutter, 2017) learning rate scheduler with a maximum of 200 iterations was deployed. 
For an initial learning rate of 0.0005, the CNN yields MSEs of 0.000377, 0.000396 and 
0.000217 for the training, validation and test data sets, respectively. On the test set, the 
MAPE for the pinboard SR prediction is 3.05% which corresponds to an accuracy of 
96.95%. The training and validation losses per each epoch are depicted in Figure 8, on a 
logarithmic scale.  

For an initial learning rate of 0.0008, the CNN yields MSEs of 0.005151, 0.003204 and 
0.003121 for the training, validation and test data sets, respectively. On the test set, the 
MAPE for the pinboard SR prediction is 9.29% which corresponds to an accuracy of 
90.71%. The training and validation losses per each epoch are depicted in Figure 8, on a 
logarithmic vertical scale. 
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Figure 8. ResNet-18 training and validation loss per epoch (logarithmic vertical scale) for an 
initial learning rate of 0.0005. 
 
In order to summarize the experimental results, we present the MAPE for the pinboard 
SR prediction and overall accuracy in Table 2. One may note that we obtained better 
results when using the VGG-11 model, which is considered obsolete in the literature. 
However, the slightly lower performance of the ResNet-18 model may be due to the small 
size of the data set used for training and we expect to obtain better results in our future 
experiments using this particular type of CNN model.  
 

CNN type VGG-11 ResNet-18 

MAPE 5.28% 9.29% 

Accuracy 94.72% 90.71% 

 
Table 2. The MAPE of pinboard SR prediction and overall accuracy for our experiments 
with the VGG-11 and ResNet-18 models. 

Discussion 

Regarding the difference in performance between VGG-11 and ResNet-18, there are 
several aspects to be mentioned: the VGG-11 has three fully-connected layers for the last 
layers, it does not contain skip-connections and the model contains more parameters. 
ResNet-18 is deeper with less parameters, but gradient injection is optimized due to 
residual connections. The comparison between the two is in fact a comparison of how 
much information is actually in the data set and how complex is the process to retrieve 
the information from the data. A VGG network will behave better for any problems with 
limited complexity, but multiple corner cases. The larger depth of the ResNet makes it 
more suitable for more complex problems, but the smaller number of parameters limits 
the number of corner cases that can be dealt with. The first data set used for VGG-11 is 
simplified due to the binarization of the input images, thus the model has a simpler job in 
learning the correspondence between laser-emphasized soil profiles and the soil 
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roughness estimates. The reason for which we choose specifically small models is related 
to the nature of the convolutional networks: they come with many parameters and, thus, 
especially for limited data sets, they could be prone to overfitting. To make a better case, 
we use the augmentation in the testing set, to put the network in face of different views 
and to have a better estimate of the achievable performance. However, these models, as 
is typical for any AI model, will carry in the prediction the limitation from annotation in 
the training set and also may add their own errors. These were experimentally evaluated 
and the reported top value of MAPE around 10%.  

In order to validate our experiments, we tested the equivalence of the SR measured 
with the pinboard and SR computed from the digital images acquired with the laser 
projection, on the same line of the cvasi-regular surface. The laser line was projected onto 
the exactly same line on the surface where the pins of the pinboard were previously 
placed. The resulted images contained the entire laser projection and a straight, horizontal 
reference line at the same height as the laser, to enable the SR estimation in the digital 
images. We measured the distance in pixels from this reference line to the laser projection 
on the surface for each pin position, as depicted in Figure 9. By normalizing the values in 
each case (i.e. subtracting the minimum value and dividing the result by the difference 
between the maximum and minimum values) and computing the standard deviation SD, 
the resulting values are very close: 0.298 in digital images, with respect to 0.303, thus an 
absolute error of 0.005 which corresponds to 1.65%. Due to the normalization step, there 
is no need to adapt the perspective in the acquired digital image.  

 

 
Figure 9.  Testing the equivalence between SR estimation using pinboard measurements and laser-
based measurements in the digital image: set-up with pinboard and laser line (left), laser line-
based SR estimation (middle) and pinboard SR measurement (right).  

 
A source of error is the usage of pinboard measurements for the training of the 

two CNNs. We consider that a higher spatial sampling frequency will improve further the 
laser results and have results closer to reality than the pinboard. Computing SR using the 
laser line projection will be equivalent to using a very high spatial resolution pinboard 
and a higher precision. In addition, the usage of the laser allows for a non-invasive 
measurement, thus avoiding any altering of the soil samples, which is inevitable when 
using the pinboard. This could be even further improved and simplified in the future, by 
using for training a better soil roughness estimate computed based on the laser profile 
directly from the digital images. In that case, the images that will be used for training will 
no longer contain the laser profile but only the top view of the soil surface.  

Conclusion 

In this article we proposed the usage of digital image and AI models for the estimation of 
soil roughness parameter of important relevance for agriculture. We used a red laser line 
to emphasize the profile of the soil surface and fixed image acquisition conditions (soil 
sample, pinboard and camera position, angles, illumination, camera settings etc.). We 
focused on two AI models, in particular two CNN architectures: VGG-11 and ResNet-
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18. We produced our own data sets and in-lab validation was performed on both synthetic 
and real soil samples.  

As future work, we envisage further increasing the size of the training data set in 
order to avoid overfitting and to increase the precision in the estimation of soil roughness. 
In addition, to perform systematic in-situ measurements for Spring 2024.  

The two data sets presented in this article will be made publicly available. 
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