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Abstract

Hyperspectral imaging is an important part of remote sensing tech-
nologies, providing detailed spectral information about the observed
scene. Visualization of the resulting hyperspectral data cube is a chal-
lenge due to the large number of available spectral bands. In this
paper, we propose a visualization technique that is based on mapping
the corresponding RGB triplet to the wavelength value with the max-
imum reflectance. The approach is based on the assumption that the
wavelength with maximum reflectance may reveal useful information
about the objects and materials in the scene. We show experimental
results on the widely-known Pavia University hyperspectral image. We
interpret the results, provide a comparison with the existing methods
and perform a quantitative evaluation for proving the usefulness of the
proposed approach.

1 Introduction

Hyperspectral images (HSIs) are captured over a wide range of the electro-
magnetic spectrum providing detailed information about the Earth’s surface.
Hyperspectral images have hundreds of spectral channels that cover visible
and infrared spectra; thus, they are an important source of information
due to remote sensing technologies [1], [2]. Due to this ability, hyperspec-
tral imaging applications have been developed for solving practical prob-
lems such as object detection [3], object recognition [4], identifying farming
issues (weeds, nutrient deficiency, diseases) [5], etc. However, effectively vi-
sualizing hyperspectral images is a challenge since displays are designed to
show one or three bands. Many approaches for visualizing HSIs have been
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proposed. Hence, HSI visualization methods can be divided into 2 main
categories, i.e., the band selection-based and transform-based methods [6].
According to the reference [7], visualization approaches can be classified into
3 categories: band selection-based methods, transform-based methods, and
fusion-based methods. However, in reference [8], authors classified proposed
approaches into 5 different categories namely: band selection, principal com-
ponent analysis (PCA) -based approaches, linear approaches, approaches
based on digital image processing techniques, and machine/deep learning
methods.

Band selection consists of choosing the 3 optimal bands that contain
full information about the scene, each band representing red, green, and
blue channels, accordingly. Commercial geospatial image analysis software
products such as ENVI [9] gives the opportunity to the user to visualize
hyperspectral images by manually selecting 3 bands as color channels. More
complicated unsupervised band selection approaches have been developed
based on one-bit transform (1BT) [10]. Decolorization-based hyperspectral
image visualization (DHV) process has three steps: chromaticity transforma-
tion, saliency map generation, and color restoration. The method separates
color information from luminance information, then restores color to the
grayscale image for contrast enhancement by selecting the spectral bands
which contain the most information about the scene [11]. In [8], authors
propose linear and non-linear visualization methods for hyperspectral im-
ages, evaluating their impact on the amount of information and complexity
of a scene. The linear method emulates a consumer-grade digital camera
sensor (Canon 5D Mark II) while the non-linear method uses an Artificial
Neural Network (ANN) trained on a 24-sample color checker. Another pro-
posed approach is a color matching function (CMF)-based that maps the
hyperspectral data onto a displayable color space in three steps: select-
ing the appropriate CMF, normalizing the data, and mapping it to a color
space [12]. Constrained manifold learning for hyperspectral imagery visual-
ization (CML) is another approach for visualizing the HSIs that preserves
spectral and spatial data. The semi-supervised locally linear embedding
technique is employed to map high-dimensional data to a lower-dimensional
manifold and it allows the user to define the constraints [13]. On the other
hand, the main idea of transform-based methods is to represent the impor-
tant information of the original image through a spectral transformation
method. Examples of this approach are PCA for dimension reduction of the
data, a visualization technique to map the three principal components to the
R, G, and B channels of the color image [14], another technique independent
component analysis (ICA), and it is a frequently used unsupervised classifi-
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cation method [15]. Basic idea is to decompose a set of multivariate signals
into a base of statistically-independent signals with minimal loss of infor-
mation content. There are many ICA algorithms that have been developed,
the well-known one is FastICA with kurtosis maximization [16], [17].

In this article, we propose a visualization technique based on mapping
RGB triplets to the wavelength values with the maximum reflectance in the
spectral reflectance curve of each pixel. Various surface types like water,
bare soil and vegetation reflect radiation differently in various channels,
thus we make the assumption that the maximum-reflectance wavelength of
a pixel spectral signature may offer useful information about the objects and
materials in the acquired scene. The proposed pixel-wise technique has the
advantage of being very simple while emphasizing the most reflective band
in every pixel. The disadvantage is the fact that only one spectral band is
used for visualization and this spectral band differs for each pixel.

The rest of this paper is organized as follows. The proposed HSI visu-
alization technique is described in Section II and the experimental results
are presented in Section III, along with a comparison with state-of-the-art
techniques. Finally, conclusions are provided in Section IV.

2 Proposed Method

The proposed approach consists of two steps: (i) determining the maxi-
mum reflectance value in a pixel spectral signature and the corresponding
wavelength; and (ii) assigning an RGB triplet to each previously-determined
wavelength, thus realizing the visualization of the hyperspectral data through
the colorization of the maximum-reflectance wavelength. The implementa-
tion of the proposed approach was done in Matlab. The two steps are
described and illustrated in what follows.

2.1 Determining the maximum reflectance and the corre-
sponding wavelength ()

For each pixel, we determine the wavelength value of the maximum re-
flectance in the spectral reflectance curve. This step is illustrated in Fig. 1,
where the maximum reflectance corresponds to the wavelength of 734 nm.
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Figure 1: A pixel spectral signature of Pavia University hyperspectral image and
its maximum reflectance.

2.2 Assigning the corresponding RGB triplet to the maximum-
reflectance wavelength

For the conversion of wavelength to RGB color space we used the approach in
[18]. The RGB color components are computed as piece-wise linear functions
of the wavelength A. The functions used to assign each color channel value
in the RGB triplet are depicted in Fig. 2. For implementing the conversion
step we used the look-up tables available in [19], resulting in a faster run of
the proposed approach.

The resulting colors as a function of wavelength () are depicted in Fig.
3.

3 Experiments

The Pavia University hyperspectral data set was deployed in our experiments
[20]. The hyperspectral data cube was captured with a Reflective Optics
System Imaging Spectrometer (ROSIS) sensor and has a spatial resolution of
610x 340 pixels and 103 spectral bands, thus resulting in a 610x340x 103 size



This article has been submitted to ICEMES 2023

300 T T T T T T T T

250 N

200

T
1

150 N

T
1

100

0 . . . . . . . .
350 400 450 500 550 600 650 700 750 800

A [nm]

Figure 2: The functions used for the conversion of wavelength to RGB, for the red,
green and blue components.
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Figure 3: The colors in the visible spectrum, as a function of wavelength ().

data cube. The sensor captures a range from 430 to 860 nm and bandwidth
is equivalent to 4 nm for all 103 spectral bands. We disregarded the number
of bands from the upper end of the acquired spectrum since they are in the
infrared range. Only visible spectral bands were considered for colorization
through the mapping of the RGB values. In this case, the considered Pavia
University hyperspectral cube has dimensions of 610 x 340 x 84.

In Fig. 4 we present the experimental results obtained on two crops of
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the Pavia University data set. We depict the visualization results, as well as
the gray-scale pseudo-image of maximum reflectance wavelength (denoted A
pseudo image).

(a) RGB image (b) RGB image (c) A pseudoimage (d) A pseudo im-
upper part lower part upper part age lower part

Figure 4: Experimental results of the proposed approach on Pavia University image
crops.

One can notice that the visualization result exhibits a lot of red shades,
as a consequence that of the presence of mainly natural materials in the
scene: bare soil, meadows, gravel, and trees. The artificial surfaces (asphalt,
painted metal sheets) are depicted with bluish colors (Fig. 4(a) and Fig.
4(b). For the painted metal sheets, the proposed method shows that the
maximum-reflectance wavelength is the one determining the perceived color
in the visualization aiming at producing the natural colors in the scene.
Another particular aspect is the fact that the shadows are emphasized, being
colorized with a dark blue/violet color.

In Fig. 5 we show the comparison of the proposed approach with other
visualization techniques. Fig. 5(a) represents the result of our proposed
method for the visualization of HSI. Fig. 5(b) is the 2D matrix constructed
from wavelength values of maximum reflectance and a pseudo image con-
taining features of the actual dataset. Fig. 5(c) and Fig. 5(d) are the results
of experiments with the linear color formation (based on the Canon 5D cam-
era sensitivity curves) and ANN respectively. Fig. 5(e) is based on CMF
while Fig. 5(f) was constructed by the CML technique. Fig. 5(g) shows
the Pavia University scene which was visualized with the PCA method and
Fig. 5(h) shows the one that was accomplished with DHV. Finally, Fig.
5(i) is the result of the Quality-Based Band Selection (QBS) method [21].
One can observe that the Lin, ANN, CMF and CML methods aim at re-
producing the natural color of the scene, as perceived by an observer. The
PCA, DHV, and QBS aim to represent the scene in a different representa-
tion space, in order to emphasize other properties of the spectral reflectance
curves, like the highest information and variability components (PCA) or
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the highest-quality bands (QBS).

(a) Proposed (b) A pseudo (c) Lin (d) ANN (e) CMF
method image

(f) CML (g) PCA (h) DHV (i) QBS

Figure 5: Comparison of the proposed approach with state-of-the-art visualization
techniques.

Despite being a visualization technique, the proposed approach shows
the potential in pixel classification and, thus, image segmentation of the hy-
perspectral data. In what follows, we performed a quantitative evaluation
of the proposed approach’s capabilities of correctly classifying pixels belong-
ing to several classes of materials present in the Pavia University scene. In
order to evaluate the results we used the available ground truth informa-
tion [20]. We observed that shadows appear as violet, painted metal sheets
as cyan while natural surfaces (meadows, trees, bare soil, etc.) appear as
red. Thus, we used labeled samples in the ground truth data set to com-
pute the percentage of correctly identified pixels in the proposed method.
The evaluation was applied to a total of 5 samples: meadows, trees, painted
metal sheets, bare soil, and shadows. Meadows, trees, and bare soil were
considered natural surfaces while painted metal sheets were an example of
artificial surfaces. We considered shadows as a separate category. Table 1
represents the results of the evaluation. For the considered categories, we
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show the corresponding wavelength range and the percentage of correctly-
classified pixels (denoted as PCCP). Results indicate that the approach has
the ability to classify the different materials on the scene with very high
accuracy.

Table 1: QUANTITATIVE EVALUATION OF CORRECTLY-CLASSIFIED PIX-
ELS.

Samples | Painted metal sheets Shadows Natural surfaces
Range ()\) 470 — 550 nm 430 — 470 nm | 620 — 780 nm
PCCP 99.5 % 94.2 % 99.8 %

4 Conclusion

Visualization of the hyperspectral data cubes is a challenge due to the high
number of spectral bands. Various approaches exist that consider all or a
certain subset of the available spectral bands. In this paper, we proposed
a visualization technique that is based on mapping the corresponding RGB
triplet to the wavelength value with the maximum reflectance in the spectral
reflectance curve of each pixel. The approach has two steps: determine the
wavelength value where the reflectance is at its maximum in each pixel, then
map the RGB triplet to the corresponding wavelength value. The proposed
pixel-wise method for visualization consequently uses only one spectral band
from the data cube. We showed experimental results on a real hyperspectral
image and its comparison with other methods. Results indicated that our
approach is able to emphasize surfaces of similar nature in the hyperspec-
tral image, mainly the artificial and natural materials, as well as shadows
which are important to detect in remote sensing applications. The shadows
are represented with violet, indicating that the wavelength corresponding
to the blue-violet has the highest reflectance, regardless of the fact that the
underlying material is natural. We performed a quantitative evaluation by
computing the percentage of correctly-classified pixels, based on the avail-
able ground truth, for three types of surfaces: shadows, metal sheets, and
natural. We conclude that, unlike other methods, the proposed approach
has usefulness in hyperspectral image visualization and pixel classification
scenarios, for emphasizing surfaces of similar kind or nature.
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