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Abstract

With the availability of several remotely sensed data sources, the problem
of efficiently visualizing the information from multisource data for improved
Earth observation becomes an intriguing and challenging subject. Multi-
spectral (MS) and hyperspectral (HS) images encompass a wealth of spectral
data that standard RGB monitors cannot replicate directly. Thus, it is im-
portant to elaborate methods for accurately representing this information
on conventional displays. These images, with tens to hundreds of spectral
bands, contain relevant data about specific wavelengths that RGB channels
cannot capture. Traditional visualization methods often use only a limited
amount of the available spectral information, resulting in a significant loss
of information. However, recent advances in artificial intelligence models
have provided superior visualization techniques. These artificial intelligence
(AI)-based methods allow for more realistic and visually appealing represen-
tations, which are important for the information interpretation and direct
identification of areas of interest. The main goal of our study is to pro-
cess aggregated datasets from various sources using a fully connected neural
network (FCNN), while considering visualization as a secondary objective.
Given that our data come from a variety of sources, a significant emphasis
in our study was placed on the preprocessing stage. In order to achieve a
consistent visualization across datasets from different sources, proper pre-
processing by standardization or normalization procedures is essential. Our
research comprises numerous experiments to demonstrate the effectiveness of
the proposed technique for image visualization.
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1 Introduction

The unique spectral properties of different types of materials determine vari-
ations in the way they absorb light, thus giving each material a distinct spectral
fingerprint. Multispectral (MS) and hyperspectral (HS) sensors are capable of
capturing a rich spectral information that can cover hundreds of spectral bands,
allowing them to detect even the smallest changes in the reflectance or radiance of
objects. The resulting images produced by MS and HS sensors include additional
spectral information about the chemical composition of objects. This additional
information makes them extremely useful in a series of applications in areas such
as agriculture [1], [2], forestry [3], [4], environmental monitoring and ecology [5],
[6], object detection [7], land cover classification [8], [9], as well as military and
industrial fields.

In this context machine learning techniques allow for notable progress in a large
range of application of remote sensing. Examples include a Siamese Transformer
Network designed for HS image target detection [10] and some techniques for HS
image denoising and anomaly detection [11, 12, 13, 14]. These advances highlight
the growing ability of machine learning strategies to refine the understanding and
interpretation of remote sensing data.

A first step in MS and HS interpretation is the visualization of the data in a
comprehensive manner for human users. MS and HS images contain more spectral
information than standard RGB channels can display, providing important data
about specific wavelengths, beyond the RGB capabilities.

A realistically displayed spectral satellite image enables direct human inter-
pretation and identification of areas of interest, but accurate visualization is chal-
lenging because of the need to compress information from numerous bands into
three, while preserving essential spatial and spectral detail.

Several visualization techniques have been proposed in the scientific literature
in order to generate realistic RGB images from spectral images. These include
band selection [15], [16], independent component analysis (ICA) [17] and principal
component analysis (PCA) [18], [19] based methods, linear and nonlinear methods
[20], and, relatively recent, machine learning approaches [21], [22].

While the classical method based on band selection uses a very small part
of the available information, disregarding the information available in the other
unused bands, better results of visualization with AI models have already been
reported in recent research papers [23]. Such methods, like the proposed one,
allow for a more realistic rendering of colors and, in the same time, producing
more appealing images (vivid colors, good contrast, large dynamic range, etc.)
while showing the color as close to the real colors of the scene, as they would have
been perceived by a human observer.

An accurate visualization of satellite images can facilitate a direct human in-
terpretation for spotting pixels or areas affected by various degradation (e.g. in
agriculture, spotting areas affected by diseases of the agricultural crops). More-
over, satellite images rendered in a more realistic manner can be used as a first
step to verify the accuracy of different approaches, such as classification, which
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can be initially appreciated visually.

A major challenge in addressing different tasks on MS and HS images is the
variability of the image data (spectral range, spatial resolution etc.) when ob-
tained by different sensors. Thus the primary goal of our research, presented in
this paper, is a method of processing such aggregated datasets, obtained from
various sources, using a fully connected neural network (FCNN). Visualization is
merely a secondary goal, as a test case specifically for this fusion.

Although research in the area of visualization is still limited, as already de-
scribed in [24] and [23], a neural network trained on a set of MS images can be used
successfully to visualize spectral images acquired by different sensors. Challenges
in this field include limited labeled training data and spectral variability between
different sensors, as they capture information at different spectral wavelengths.
The spectral variability can make it difficult for a neural network to extract sig-
nificant and meaningful features in a coherent manner, especially if the training
data does not cover the full range of spectral variation.

The article explores different approaches to normaliziation respectively stan-
dardization of the data from different datasets and describes experiments with
different preprocessing approaches. Our FCNN methodology efficiently handles
both MS and HS images. It also addresses the challenges of band selection and
spectral variability, making it a versatile and robust approach for different data
settings. Furthermore, the architecture of the network and training hyperparam-
eters are presented in detail.

The main advantages of our method lie in the generalization of the approach
and adaptability to data of different spectral and spatial resolution. Further-
more by combining publicly-available datasets with appropriately labeled data
for network training, we ensure a principled and accessible foundation for model
learning.

Our proposed method also has the advantage of not requiring further image
post-processing of the obtained RGB image, which leads to a more polished and
refined output straight out of the model.

In the case of FCNN processing, information aggregation is quite beneficial,
especially when public data is limited. Such aggregation increases the method-
ology’s efficacy despite related limitations. The visualization results demonstrate
potential even when dealing with datasets containing fewer bands, indicating the
versatility and robustness of our methodology across various data configurations.
Such a methodology eliminates any doubt regarding the selection criteria of the
effective bands used.

The article is organized as follows. Section 2 describes the different MS and
HS datasets used in our experiments, pointing out the challenges of working with
multisource data. Section 3 presents the data preprocessing steps and the pro-
posed FCNN model architecture, together with the model training process. The
visual results of our experiments for the different strategies used are presented
and discussed in Section 4, and their comparative quality assessment is outlined
in Section 5, showing the potential of the new approach proposed in Section 4.
Finally, the conclusions of this article and some limitations of our study, which
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became apparent after the completion of the research are emphasized in Section
6, together with future directions for our research.

2 Materials

2.1 Hyperspectral and Multispectral Imaging

MS and HS images are two types of remote sensing data that capture in-
formation about the Earth’s surface by sensing electromagnetic radiation. As
mentioned in the introduction, they are widely used in various fields, including
agriculture and environmental monitoring. The key distinction between MS and
HS images lies in their spectral resolution. HS images have a far higher spectral
resolution, catching data in several narrow and contiguous bands, while MS im-
ages only capture data in a small number of discrete bands. This higher spectral
resolution allows for a more detailed characterization of surface materials based
on their spectral signatures. MS and HS images offer valuable insights into the
Earth’s surface, and the choice between them depends on the specific application
requirements and the level of spectral and spatial detail needed for analysis.

Differences in sensor types used to capture MS and HS images can introduce
specific challenges and variations in the data. Different sensors may have vary-
ing spectral band configurations, capturing data in different wavelength ranges or
bandwidths. Multiple sources and sensor variety can result in inconsistency when
comparing or combining data from different sensors. It is essential to carefully
account for these differences to ensure accurate and meaningful analysis. Also,
sensors used in MS and HS imaging require calibration to ensure the accuracy
and reliability of the captured data. However, calibration procedures can vary
between sensors and platforms. Inconsistencies in calibration methods can lead
to differences in the radiometric or spectral accuracy of the acquired data. Proper
calibration and validation techniques must address these issues and establish reli-
able and consistent data sets. Each sensor has its characteristics and limitations,
such as spectral response functions, signal-to-noise ratios, and dynamic ranges.
These characteristics can also affect the quality and reliability of the captured
data. In spectral imaging, sensors can have different spatial resolutions, affecting
the level of detail captured in the images. Combining or comparing red multi-
source sensor data with different spatial resolutions can introduce challenges, as
the spatial variability may need to align better.

Additionally, researchers and analysts should be aware of the sensor-specific
characteristics and limitations and consider them when interpreting and com-
paring data from different sources. Standardization efforts are also conducted to
facilitate cross-sensor compatibility and consistency. While multisource sensor dif-
ferences can introduce challenges and variations in the data, proper preprocessing
and understanding of the sensor characteristics can be addressed to ensure accu-
rate and meaningful MS and HS imagery analysis.
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2.2 Description of the Datasets

The availability of MS and HS imagery with high-resolution spectral informa-
tion has redefined our understanding of environmental and ecosystem phenom-
ena. These datasets are increasingly accessible for both scientific and practical
purposes, and their analysis represents an initial step toward gaining a deeper
comprehension of the aforementioned phenomena. Several datasets are recognized
and used in this context.

This study selected the CAVE and UGR datasets for the model’s training
due to their well-established reputation in the literature. They offer a diverse
range of colors, and the images were captured under various environmental condi-
tions. Moreover, a corresponding RGB image is available for each image in these
datasets, facilitating a comprehensive analysis.

For the testing phase, three HS images were used, two of them provided by
the relatively recent PRISMA satellite and one acquired by the Reflective Optics
System Imaging Spectrometer (ROSIS-3) over Pavia University in Italy.

2.2.1 CAVE Dataset

The CAVE dataset [25] comprises 32 MS images captured indoors under con-
trolled illumination conditions. Each image has a resolution of 512 × 512 pixels
in the spatial domain. The spectral range is between 400 nm and 700 nm, with
a sampling interval of 10 nm, resulting in a total of 31 spectral bands. A corre-
sponding RGB image with the same spatial resolution is provided for each MS
image. This dataset does not contain any natural scenes.

2.2.2 UGR Dataset

The UGR dataset [26] contains 14 outdoor images of urban scenes. Most of
these images possess a spatial resolution of 1000× 900 pixels. The spectral range
spans from 400 nm to 1000 nm, with a sampling interval of 10 nm, resulting in
61 spectral bands, out of which 31 fall within the visible spectrum. Additionally,
each MS image is accompanied by a corresponding RGB image, sharing the same
spatial resolution.

As can be observed from the description, the CAVE and the UGR MS images
have in common the first 31 wavelengths from the visual domain. This makes them
suitable for using the same FCNN with 31 input neurons. From UGR images, we
thus considered only the spectral bands in the visual range, as these are relevant
for visualization.

2.2.3 PRISMA Images

The PRISMA images used for coloring in this study are obtained from the
PRISMA hyperspectral satellite operated by the Italian Space Agency (ASI). Two
specific images were captured, one on October 18, 2022, in the northern region
of Brasov county, Romania, and the other on March 24, 2023. The satellite’s
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hyperspectral sensors are capable of capturing images within a wide wavelength
range of 239 spectral bands, spanning from 400 nm to 2500 nm. Among these
bands, 66 falls within the Visible Near Infra-Red range (400 nm - 1010 nm), while
173 bands reside in the Short Wave Infra-Red range (920 nm - 2500 nm). The
spectral sampling interval for the satellite’s images is less than 12 nm. Regarding
spatial characteristics, the images possess a resolution of 1000×1000 pixels, with a
ground sample distance of 30 m [27]. The spectral bands used for the experiments
are in the visible domain, covering the range from 406 nm to 713 nm, with an
approximate sampling interval of 8 nm.

2.2.4 Pavia University Dataset

The Pavia University dataset was made available by the Telecommunications
and Remote Sensing Laboratory of Pavia University in 2001. This dataset was ac-
quired using the Reflective Optics System Imaging Spectrometer (ROSIS) sensor
during a flight campaign conducted over Pavia. The dataset comprises 610 × 610
pixels and covers a wavelength range from 430 nm to 860 nm with 115 spectral
bands. It has a spatial resolution of 1.3 meters and a spectral resolution of approx-
imately 4 nm. However, some samples within the image do not contain any useful
information and must be eliminated before analysis. Once the broken bands are
removed, the 103 remaining bands can be used further in the investigation [28].

In order to test the PRISMA and the Pavia University images on the FCNN
trained on the CAVE or the UGR dataset it is necessary to adapt these images
to the network’s input layer. As this input is calibrated to receive pixels with the
spectral signature of CAVE images, each spectral pixel from the test image has
to be mapped on the wavelengths of a CAVE image pixel. This has been done in
this study by linear interpolation. For each wavelength of a test image (PRISMA
or Pavia University), the value of a CAVE image channel is interpolated from the
values of the two neighboring channels of the test image.

Fig. 1 represents the original HS pixel from a PRISMA image together with
the interpolated values of this pixel.

It can be seen in Fig. 1, that by linearly interpolating the PRISMA HS image
to fit the bands of the CAVE dataset, the changes in the data profile are negligible,
thus justifying this approach.

2.3 Prerequisites

In the context of machine learning experiments, standardization, and normal-
ization are preprocessing techniques used to transform input data into a specific
range or distribution. These techniques are commonly applied to improve the
performance and convergence of machine learning models [29].

Standardization (z-score normalization or feature scaling) transforms the dataset’s
features into zero mean and unit variance. It entails dividing each data point by
the standard deviation after taking the mean value of the feature out of each data
point.
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Figure 1: Original values of one HS pixel from the first PRISMA image (blue)
and interpolated values (orange).

The formula for standardization is shown in the following equation:

z =
x− µ

σ
(1)

where:
z is the standardized value,
x is the original value,
µ is the mean of the feature,
σ is the standard deviation of the feature.

Standardization ensures that each feature has a similar scale and range, which
is beneficial for algorithms that assume normally distributed data or when features
have different scales. It centers the data around 0, with a standard deviation of
1.

Normalization (min-max scaling) transforms the dataset’s features to a stan-
dard range - typically between 0 and 1. Still, the range depends on the specific
normalization technique used and the requirements of the dataset. It involves sub-
tracting the minimum value of the feature from each data point and then dividing
it by the range.

The formula for normalization is shown in the following equation:

x′ =
x−min(x)

max(x) −min(x)
(2)

where:
x′ is the normalized value,
x is the original value,
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min(x) is the minimum value of the feature,
max(x) is the maximum value of the feature.

Normalization preserves the shape of the distribution and is suitable when the
absolute values of the features are not important but rather their relative values
or ratios.

Both standardization and normalization help improve the performance of ma-
chine learning models by ensuring that features are on a similar scale and avoiding
the dominance of certain features due to their larger magnitudes. It is important
to note that the impact of standardization and normalization on performance can
vary depending on the dataset and the specific machine learning algorithm used.
Therefore, it is advisable to experiment with both techniques and evaluate their
impact on the model’s performance before finalizing the preprocessing approach.

3 Methods and Procedures

The objective of the next section is to discuss some elements crucial to the
success of the tests conducted for this study. For the proposed visualization to
perform, it is of great importance to comprehend the preprocessing steps and the
model employed.

3.1 Data Preprocessing Step

The preprocessing stage is essential to data preparation in machine learning
and data analysis. Its main objective is to convert raw data into a format suitable
for additional analysis or modeling.

Standardization and normalization are two of the many methods included in
preprocessing. They seek to improve the performance and efficiency of various
algorithms by bringing the data within a predictable and manageable range. De-
pending on the particular dataset, the type of issue, and the algorithms being
applied, these preprocessing methods can change. It is advisable to test several
transformation strategies and assess their effects on the model’s performance to
choose the best approach for a particular task.

In this study, various data preprocessing and transformation variations were
tried precisely to study the feasible strategies and related results comprehensively.
Thus, two strategies were highlighted in this paper:

❼ A strategy involving preprocessing on each file, concatenation of data from
all the input files, shuffle, separation by train subset and test subset (re-
spectively 3

4 and 1
4 of all existing pixels). We will further call this strategy

individual preprocessing.

❼ A strategy involving concatenation without any preprocessing beforehand,
shuffle, splitting into train and test (with the exact percentages as the pre-
vious strategy), and application on the training subset of one of the pro-
posed preprocessing methodologies (standardization or normalization). Af-
ter training, our learning algorithm has learned to deal with the data in
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scaled form, so we have to normalize/standardize our test data with the
normalizing/standardizing parameters used for training data. We will fur-
ther call this strategy global preprocessing.

From a technical perspective, for both strategies, StandardScaler() [30] and Min-
MaxScaler() [31] have been used for standardization/normalization, respectively.

3.2 The Proposed AI Model Architecture

The problem of consistent spectral image visualization is of significant impor-
tance, as it enables the users to visually interpret and understand the acquired
data. For sensors like those of Landsat or Sentinel, with a small number of spec-
tral bands overall and three bands in the visual range, the visualization problem
is straightforward, as the three bans for red, green, and blue generate the cor-
responding RGB images. With the upcome of multisource modern MS and HS
sensors with a wide range of spectral bands in the visual range, the problem of
correct and accurate visualization gets more complex. Generally, classical meth-
ods like the ones mentioned in the introduction, often result in low-quality images
and usually need adjustments.

Starting from the ideas in [23], a fully connected neural network was con-
structed and trained on a set of MS images, as mentioned in [24], in order to
visualize spectral images acquired by different sensors. In the following section,
the architecture of the network and the hyper-parameters used for training are
described in detail.

3.2.1 Model Description

Consistently mapping n-dimensional spectral pixel on a tridimensional RGB
pixel can be considered a regression problem, and thus a FCNN is an appropriate
model for learning this mapping. The model, illustrated in Fig. 2, consists of five
layers: an input, an output layer, and three hidden layers.

Figure 2: Model pipeline.

The input layer consists of 31 neurons, as the number of channels of the CAVE
images is 31, all in the visual range, and the number of spectral bands in the visual
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range of the UGR images is also 31. The number of output neurons is 3, one for
each RGB color.

In the hidden layer, the number of neurons was chosen to decrease from the size
of the input towards the size of the output by a factor of 2. From this consideration
and taking into account the computational advantage of data structured as the
power of two, in the first hidden layer, we used 32 neurons, in the second 16, and
in the third 8. The activation function on the hidden layers is the Exponential
Linear Unit (ELU) [32], as we did not want to discard negative values.

Assessing machine learning models’ performance is crucial for evaluating their
effectiveness and suitability for specific assignments. Two commonly used loss
functions are Mean Squared Error (MSE) and Mean Absolute Error (MAE). As
MSE is very sensitive to outliers, while MAE reduces their impact almost com-
pletely, we chose the HuberLoss function, which combines both errors in an bal-
anced way [33]. The Huber loss is defined as follows:

Lδ(y, f(x)) =

{

1
2(y − f(x))2, |y − f(x)| ≤ δ

δ(|y − f(x)| − 1
2δ), |y − f(x)| > δ

(3)

where y is the true value, f(x) is the predicted value, and δ is a parameter that
determines the threshold for which, in the loss function, the MSE is replaced by
MAE.

For the data points where the distance between the label and the predicted
value is small, less than the threshold δ, the function behaves like MSE. This
makes it more robust to noise. However, for data points with larger differences,
it switches to a linear loss. This makes it less sensitive to outliers and helps in
providing a more stable estimation. If the outliers comprise 20–30% of the data,
the MAE will ignore them entirely. However, Huber loss will create a balance if
the outliers are significant and therefore it is a useful choice when dealing with
datasets that may contain outliers or noise.

The selection of δ plays a crucial role. In our case, the value δ = 10.0 parameter
for the HuberLoss was selected empirically. We considered that a difference of 10
between two values (of a color channel) is acceptable for using the MSE, similar
to JND (Just Noticeable Difference) corresponding to ∆E = 3 in CIELab.

3.2.2 Model Training

After substantial testing, 150 epochs for training were determined to be ad-
equate for accurate color mapping. The number of pixels in a batch was 2048
to shorten training time. In the backpropagation step, a common value for the
learning rate α = 0.005 and the Adam optimizer provided by the Pytorch library
was used.

The model was trained on Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz server
with 8 CPUs, and the duration of the training on 150 epochs on the UGR dataset
was of approximately 2 hours.

The set used for training was preprocessed, as discussed in Section 4.1.2, by
concatenating all the pixels from all the images, shuffling, partitioning them into
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train and test sets, and standardizing over the train set.

The training algorithm can be described as follows.

Model Training Steps

1. Load pixels from all the images of the dataset (CAVE or UGR), shuffle the
pixels, and partition into train and test (75% versus 25%);

2. Preprocess data by standardization using scikit-learn StandardScaler [30];

3. Split set in random batches of 2048 pixels;

4. Train the model using HuberLoss.

In order to enhance clarity and facilitate a deeper understanding of the pro-
posed methodology, pseudocode has been provided to describe key steps in detail
in Algorithm 1.

Figure 3: The loss decay on the train and test sets when training the model with
the CAVE dataset, respectively UGR dataset.

The graphic representation of the loss decay on the train and the test sets
for the CAVE and UGR datasets are represented in Fig. 3. It can be seen from
this figure, that on the train set, the loss decays very steeply during the first
epochs and then gets stabilized, while to achieve similar results on the test set,
the network needs more training.
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Algorithm 1 Pseudocode for the Training of the FCNN
Require: path dataset, model, lr = 0.005, epochs = 150
1: (data, labels)← load pixels(path dataset)
2: shuffle(data, labels)
3: nr train data← ( 3

4
) ∗ len(data)

4: nr test data← len(data)− nr train data
5: train set← (data.head(nr train data), labels.head(nr train data))
6: test set← (data.tail(nr test data), labels.tail(nr test data))
7: Initialize the StandardScaler and Standardize training data
8: Apply Scaler on test data
9: batch size← 2048
10: Initialize weights of the model
11: optimizer ← AdamOptimizer(lr, weight decay = 0.0008)
12: best loss← maxV alue
13: loss function← HuberLoss(10.0)
14: train loss vec← []
15: test loss vec← []
16: for epoch ∈ (1, epochs) do

17: train loss← 0
18: for batch, (x, y) ∈ train set do
19: y pred = model(x)
20: loss← loss function(y, y pred)
21: Backpropagation Step - backprop(loss)
22: train loss← train loss+ loss.item()
23: end for

24: train loss← train loss/(batch size)
25: train loss vec.append(train loss)
26: if train loss < best loss then

27: Save current weights
28: best loss← train loss
29: else

30: end if ▷ Now evaluate on test set
31: test loss← 0
32: for batch, (x, y) ∈ test set do
33: y pred← model(x)
34: loss← loss function(y, y pred)
35: test loss← test loss+ loss.item()
36: end for

37: test loss← test loss/(batch size)
38: test loss vec.append(test loss)
39: end for

40: Save current weights
41: plot(train loss vec, test loss vec)
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(a) (b) (c) (d) (e)

Figure 4: Visualization results of the experiments described in Section 4.1, in
which global preprocessing was done on the datasets. In (a) one sample of CAVE
respectively UGR datasets. The other subfigures show the results of the FCNN
trained on CAVE (b) respectively UGR (c) with global normalization, and on
CAVE (d), respectively UGR (e) with global standardization of the training set.

4 The Results for Different Strategies

4.1 Results with Global Preprocessing

In these experiments, the general strategy is that after splitting into the train
and test subsets, normalization or standardization was performed on the entire
training set, and then the results were applied to the test set. For inference, the
chosen method is applied to the image being colored, using the parameters from
the train.

4.1.1 Global Preprocessing with Normalization

In Fig. 4b are presented the results of the FCNN trained on the CAVE dataset
and in Fig. 4c the results when training the FCNN on the UGR dataset, on one
sample image, see Fig. 4a, from each of these datasets. The data was preprocessed
by min-max normalization on the respective training set using the MinMax scaler.

The results of the FCNN trained on the CAVE and UGR Datasets on the Pavia
University image are presented in Fig. 6a, respectively in Fig. 6b. The results of
the model on one of the images acquired by the PRISMA Satellite in both treating
scenarios are presented in Fig. 7a and 7b. The Pavia University and the PRISMA
spectral images were interpolated, to match the input spectral bands and were
normalized using the parameters obtained on the respective training sets.

4.1.2 Global Preprocessing with Standardisation

The results of the FCNN trained separately on the CAVE and, respectively
the UGR dataset on one sample image of each of these datasets (Fig. 4a) are
presented in Fig. 4d for the CAVE and in Fig. 4e for the UGR trained network.
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The standardisation in each case was done on the corresponding training dataset
using the Standard Scaler.

The results of this method on the Pavia University image can be seen in Fig.
6c and Fig. 6d and the results on PRISMA HS image are presented in Fig. 7c
and in Fig. 7d.

(a) (b) (c) (d) (e)

Figure 5: Visualization results of experiments described in section 4.2, in which
preprocessing was done on each image of the datasets separately. In (a) one sample
of CAVE respectively UGR datasets. The other subfigures show the results of
the FCNN trained on CAVE (b) respectively UGR (c) with normalization, and
on CAVE (d), respectively UGR (e) with standardization on each image of the
training set.

4.2 Results with Individual Preprocessing

In these experiments, before concatenating all the images and separating them
into train and test subsets, each image is taken and brought into the same range
of values by normalizing/standardizing each one according to its own values.

4.2.1 Individual Preprocessing by Normalization

Each image is considered separately, then normalized according to the min/-
max in the image, thus transforming all values into the range [0, 1]. All the images
are then concatenated and the resulting pixel set is split into train and test sub-
sets, respectively. At inference, an image is normalized and colored according to
its associated min/max values.

In Fig. 5 are presented the results of the coloring using the FCNN trained on
CAVE and respectively UGR datasets, normalizing each image before concate-
nating with the others.

In Fig. 6e and Fig. 6f are presented the coloring results on Pavia University
and in Fig. 7e and Fig. 7f those on the PRISMA image, with the CAVE, re-
spectively UGR trained FCNN, normalizing each image with respect to its own
min-max values.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Visualization of the results on the Pavia University MS image using
the FCNN trained in the described scenarios: on CAVE (a) respectively UGR
(b) with global normalization and using for inference the same scaler as for the
training set, on CAVE (c) respectively UGR (d) with global standardization and
using for inference the same scaler as for the training set, on CAVE (e) respectively
UGR (f) with normalization of each image with respect to its own min-max values
and on CAVE (g) respectively UGR (h) with standardization of each image with
respect to its own mean and standard deviation.

4.2.2 Individual Preprocessing by Standardisation

In this approach, each image is considered separately, then standardized ac-
cording to the mean/average deviation in the image, so all values are brought into
the standard range [-1, 1]. The processed images are then concatenated and the
resulting pixel set is split into train and test subsets, respectively. At inference,
an image is standardized and colored according to the distribution of values in
the image.

In Fig. 5 are presented the results of the coloring using the FCNN trained on
CAVE and respectively UGR datasets, standardizing each image before concate-
nating with the others, on samples of these datasets.

In Fig. 6g and Fig. 6h are presented the coloring results on Pavia University
and PRISMA using the CAVE, respectively UGR trained FCNN, normalizing
each image with respect to its own mean/std values. The visualization results of
the FCNN on a PRISMA HS image are presented in Fig. 7g and Fig. 7h.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Visualization of the first PRISMA HS image using the FCNN trained in
the described scenarios: on CAVE (a) respectively UGR (b) with global normal-
ization and using for inference the same scaler as for the training set, on CAVE
(c) respectively UGR (d) with global standardization and using for inference the
same scaler as for the training set, on CAVE (e) respectively UGR (f) with nor-
malization of each image with respect to its own min-max values and on CAVE
(g) respectively UGR (h) with standardization of each image with respect to its
own mean and standard deviation.

4.3 A Different Approach

The experiments interpreted from the previous figures show that the best
coloring results on the CAVE and UGR datasets were obtained when normalizing
or standardizing the training set (Global Preprocessing) and using the respective
parameters on the test set. This strategy follows the standard practice in machine
learning flows. On the other hand, the results were not acceptable on the Pavia
University and the PRISMA images. This is not surprising, as these images are
bound to have different distributions than the training sets.

In Fig. 8 are illustrated the distributions on the green channels (650 nm) for
the CAVE (8a) and the UGR (8b) datasets, together with those of Pavia Univer-
sity (8c) and of the first PRISMA image (8d), both calculated after interpolation.
We selected the green channel for illustration, but the observation is valid for any
other 31 channels of the spectral images considered.

As we aimed to obtain a model that should be able to visualize images from
different acquiring sources with different distributions and spectral signatures, we
tried following a non-standard approach. We considered the FCNN model, with
global preprocessing by standardization in the training stage. After training, to
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(a) Distribution for CAVE (b) Distribution for UGR

(c) Distribution for Pavia University (d) Distribution for PRISMA

Figure 8: Distributions on the green channel (considered at 550nm) for CAVE
and UGR datasets and for Pavia University and PRISMA spectral images.

visualize Pavia University and PRISMA images, these were standardized concern-
ing their own mean and standard deviation as to obtain for each channel the mean
of 0 and the standard deviation of 1.

The following algorithm can express the inference step.

Visualization Algorithm

1. Interpolate image to fit CAVE spectral range

2. Load the pixels of the interpolated image

3. Standardize the pixels with PyTorch StandardScaler relative to their mean
and variance

4. Use the model to predict the corresponding (R,G,B) triplet for each inter-
polated image pixel

5. Construct the RGB image with respect to the original size of the input
image.
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(a) Region from image in Fig. 7g (b) Region from image in Fig. 7h

Figure 9: Illustrations of the artefacts in the PRISMA image in a region of interest.

To enhance clarity and promote a thorough understanding of the proposed
methodology, we have incorporated pseudocode of Algorithm 2 to provide detailed
descriptions of inference step.

Algorithm 2 Pseudocode for Visualization using the FCNN
Require: path ms image, model, input freq, target freq
1: image← load(path ms image)
2: interpolated← Interpolate(image, input freq, target freq)
3: Scale interpolated with StandardScaler
4: predicted← model(interpolated)
5: Make RGB image from predicted

The results of this approach are presented as follows: for the Pavia University
image in Fig. 10a (CAVE trained FCNN) and Fig. 10d (UGR trained FCNN),
for the first PRISMA image in Fig. 10b (CAVE trained FCNN) and Fig. 10e and
for the second PRISMA image in Fig. 10c and respectively Fig. 12f.

5 Discussions and Comparisons

Various experiments have been carried out in this study, all aiming to better
visualize the considered spectral images. And since we want to determine which
of the discussed approaches is better, a variety of data from different types of
sensors were used.

All the results to be commented on are presented in the figures from Fig. 4 to
Fig. 13. We will comment on each experiment, in the same order in which they
were performed.

Fig. 4 shows the results of the experiments in the case of global preprocessing
by normalization over the whole training set. As can be noticed, visually, the
results are quite similar in terms of colours. However, on closer inspection, it
can be seen that there are also pairs with better contrast, in the sense that the
colouring of an UGR image works better with a network trained with UGR images
and similarly for CAVE images.
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(a) (b) (c)

(d) (e) (f)

Figure 10: Visualization of the results on Pavia University and PRISMA, when
standardizing those images according to their own distributions. In the top row
the results were obtained using the FCNN trained on CAVE, and in the bottom
row the FCNN trained on UGR.

Fig. 5 shows the results of the experiments when each image is normalized/-
standardized according to its own values. As can be seen, normalization works
better than standardization, which makes sense because during the preprocess-
ing by normalization each feature undergoes a transformation to fit within a new
range, while preserving its original relationships with the other features in the
data, meaning that all the relational properties within the data remain intact
[34].

Following these tests, this type of preprocessing with normalization seems to be
a consistent option. The alternative with standardization is not plausible because
this transformation step tends to change the relationships between colors, which
leads to artifacts, especially for images that are not part of the training dataset,
see Fig. 9a and Fig. 9b.

Fig. 6 and Fig. 7 represent the results of tests performed on images obtained
from different types of sensors and having different characteristics than the images
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in the training sets. To use the network on images such as Pavia University image
or the images acquired by PRISMA, a mandatory step was the interpolation one,
which is necessary to map the spectral bands of those images on the input with
31 channels of the model.

Regardless of the training data set, CAVE or UGR, if we normalize or stan-
dardize over the whole training set and at the inference step we use the scaler/prop-
erties from the training stage, the results for the images taken from other sensors
are very bad in terms of brightness and contrast, on Pavia even worse than on
PRISMA (see Fig. 6d - standardization on UGR vs. Fig. 7d).

Normalization on each image yields good results on Pavia (Fig. 6e and Fig.
6f) and acceptable on PRISMA (Fig. 7e and Fig. 7f). In contrast, standardiza-
tion on each image generates significant artifacts, see Fig. 6g and Fig. 7g for
the standardization on each image in CAVE, and Fig. 6h and Fig. 7h for the
standardization on each image in UGR. These artefacts can be seen more clearly
on a selected region in PRISMA image, as illustrated in Fig. 9.

In Fig. 10, we presented different experiments for visualisation of spectral
images by means of a FCNN. As could be seen from all previous figures compared
with Fig. 10, the best results on images that were acquired by other sensors than
those used for the images in the training set and with another spectral signature,
were obtained by using global preprocessing in the training step, but standardizing
these images according to their own mean and standard deviation at inference.

We also compared our results with some conventional me-thods of spectral im-
age visualization namely band selection and XYZ space [35] as well as two other
methods: decolorization-based HSI visualization [36] and multichannel pulse-
coupled neural network (MPCNN)-based HSI visualization [37]. In Fig. 12 and
13 are displayed the results of the visualization of the first PRISMA image and,
respectively the second PRISMA image using these methods.

Moreover, we studied if our method favors certain wavelengths with respect
to others, as is the case for band selection. By plotting the weights between the
input and the first hidden layer, we found out, that all the bands contribute in
a balanced manner to the final results. In figure Fig. 11, is displayed a selection
of these weights. Each color represents the weights of one input neuron to the
neurons on the next layer, while each input neuron corresponds to one wavelength.

In conclusion, the results of our tests are better than the results of conventional
methods, at least on PRISMA, our use case, regardless of how the preprocessing
stage is performed. Given the fact that the standardization for other types of
images is done relative to their mean and variance, we believe that a network that
has been trained on images with a good distribution of light and contrast will
tend to produce images with good contrast and light, even if the original images
are affected by the atmospheric conditions. These results justify using this type
of approach in the case of satellite images.
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Figure 11: Selection of neurons with highest absolute values on the first layer.

5.1 Comparative Quality Assessment

In order to perform a numerical quality comparison between the results pre-
sented in Fig. 12 and Fig. 13, some no-reference image quality assessments [38, 39]
like entropy, which estimates information quantity, fractal dimension, which es-
timates the complexity and standard deviation, which estimates non-uniformity,
were used. These values were calculated using adequate scripts offered by [40], for
entropy and [41, 42] for fractal dimension, and the Matlab std2 function for the
standard deviation of an image. The PRISMA images were correspondingly scaled
as the scripts were calibrated for 256×256. For calculating the fractal dimension,
the parameters used were LMAX ∈ {41, 71, 101}, representing the maximum size
of the hypercubes and a threshold of 0.00001 for the standard deviation [43].

It is important to note that the actual entropy values of color images will
depend on the specific content and distribution of pixel intensities in the image.
Images with complex color patterns, a wide range of intensities, and diverse color
distributions are likely to have higher entropy values. Hence, a higher value of the
entropy indicates a higher informational content, and a higher value of the fractal
dimension indicates higher complexity of the scene and is directly correlated with
the contrast of the image. A larger variance is also characteristic of images with
a larger variety, thus greater informational content.

When satellite land cover images include agricultural areas, as well as urban
and non agricultural surfaces, as seen in the PRISMA images presented in this
study, we expect a consistent visualization to exhibit large values for the entropy,
the fractal dimension, and the variance.

The processed values for these measures in the case of the visualizations pre-
sented in Fig. 12 and Fig. 13 are displayed in Tables 1 and 2. It can be observer
that the largest values for entropy and variance are obtained in the case of the
MPCNN method, closely followed by the results provided by our FCNN. As the vi-
sualization results presented in Fig. 12d and Fig. 13d show, the MPCNN method
provides images with large variability, but with completely unnatural colors, be-



This paper was submitted at TGRS 2024 21

(a) (b) (c)

(d) (e) (f)

Figure 12: Comparative results of classic and advanced visualization techniques
with the new approach for the first PRISMA image. Band selection in (a), col-
oring with XYZ space in (b), decolorization based visualization in (c), MPCNN
vizualization in (d), results with CAVE trained FCNN in (e) and UGR trained
FCNN in (f).

Table 1: Comparative Quality Assessment for the First PRISMA Image

Sample Entropy Standard Fractal Dimension

Deviation with Lmax

41 71 101

FCNN / CAVE 15.6314 47.0056 3.7421 3.8271 3.8291

FCNN / UGR 15.8624 44.7105 3.7199 3.8064 3.7940

Band selection 12.6552 16.1236 2.7463 2.7484 2.8136

XYZ method 13.5262 20.4681 2.9795 2.9251 2.8930

Decolorization 14.0430 39.5901 2.9668 3.0568 3.1282

MPCNN 15.9284 48.0310 3.7245 3.9921 3.9566

ing thus unusable in the case of the PRISMA images. Thus, the visualizations
obtained by our method, exhibit the best visual results and almost the best quan-
titative ones. Consequently, it is evident that the FCNN visualizations yield the
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(a) (b) (c)

(d) (e) (f)

Figure 13: Comparative results of classic and advanced visualization techniques
with the new approach for the second PRISMA image. Band selection in (a),
coloring with XYZ space in (b), decolorization based visualization in (c), MPCNN
vizualization in (d), results with CAVE trained FCNN in (e) and UGR trained
FCNN in (f).

Table 2: Comparative Quality Assessment for the Second PRISMA Image

Sample Entropy Standard Fractal Dimension

Deviation with Lmax

41 71 101

FCNN / CAVE 14.9011 50.5844 3.1309 3.1925 3.2909

FCNN / UGR 15.5923 48.5822 3.0698 3.1678 3.2157

Band selection 14.2838 27.2990 2.4924 2.7755 3.1075

XYZ method 13.7575 20.7137 2.6343 2.7082 2.8104

Decolorization 12.9841 23.2493 2.6714 2.7646 2.8926

MPCNN 15.8832 53.4223 3.2908 3.4603 3.6736

best results for all the measures, with slightly greater contrast for the CAVE
trained FCNN. These quantitative results further justify the approach proposed
by the present paper.
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6 Conclusions

Processing multisource spectral images is still challenging as more satellites
with different sensor characteristics are launched, and their products are freely
available for scientists and other users. The present paper aims to resolve part
of the problems posed by a consistent and qualitative visualization of such im-
ages, using a FCNN trained on two of the most known public spectral datasets
appropriate for this purpose.

Furthermore, we studied and performed several preprocessing procedures,
which are very important in this FCNN approach to visualize multisource im-
ages exhibiting different spectral signatures.

The results we obtained were evaluated both visually and by conventional
measures of information content. This evaluation has shown that the images
generated by our method can provide a deeper understanding of various aspects,
such as identifying agricultural patches and urban centers.

The visual and quantitative results indicate that the proposed methodology is
a promising direction for a consistent and qualitative multisource spectral image
visualization. There are still some limitation of this approach. For example, in
cases where the source image exhibits minor variance, the application of stan-
dardization may compromise the realism of coloring. The reliance on labeled data
for training limits our dataset choices to those that are annotated and publicly
accessible. This limitation could affect the diversity and representativeness of the
training data, hence further research is needed to address these issues. Addition-
ally, when combining datasets, we must either interpolate or truncate information
to balance the dataset differences, each option having its trade-offs.

Our future research efforts will be based on addressing some of these limita-
tions. This preliminary work can prepare the ground for our next objective that
is interpreting the data through the perspective of vegetation indices and other
elements relevant to the agricultural sector, thus increasing the usefulness of our
approach in this sector.
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